译铭公告播报:
当前位置:首页 >> 个人服务 >> 预览个人简历信息   提醒:任何一种简历保密设置,都不会影响您在线投递简历。
 
个人信息
姓 名: 王译员  [编号]:733 性 别: 男 
擅长专业: 金融,商务,互联网 出生年月: 1985/3/1
民 族: 汉族 所在地区: 北京 北京
文化程度: 本科 所学专业: 英语
毕业时间: 39263 毕业学校: 北京外国语大学
第一外语: 英语 等级水平: TEM8
口译等级: 工作经历: 2 年
翻译库信息
可翻译语种: 英语
目前所在地: 北京 北京
可提供服务类型: 笔译
每周可提供服务时间: 周一至周五晚上时间 周六周日全天
证书信息
证书名称: TEM8
获证时间: 2007/5/1
获得分数: 87
工作经历
工作时期: 2007/8/1--2008/12/1
公司名称: 美国汇盛公司北京代表处
公司性质: 外商独资
所属行业: 金融/证券/投资/保险
所在部门: 市场咨询部
职位: 客户主管
自我评价: 细致,耐心,认真
笔译案例信息
案例标题:  《外汇金融基础和风险控制》
原文: 没有原稿备案
译文: 没有完稿备案
案例标题:  《汽艇制作和损坏修复》
原文: 115 CHAPTER 7 第7章 Undercured, Resin-Rich, and Cooked Laminates Undercure is really quite rare. My own knowledge of it is imperfect, as is the dearth of published literature. This is not really surprising: To builders it is their worst dream come true—one on which they’d rather not dwell. When resin fails to cure, what was to have been fiberglass does not in fact exist; it is but a number of layers of glass fiber materials saturated with a water-permeable substance. There are of course different degrees of undercure, from a still soft and sticky state to an apparently hard, firm, but incompletely cured laminate. It can occur in differing amounts in a given part, affecting very small local spots or the entire piece. Another fault that occurs in laminates often is called undercure but really should be called overcure. It is the result of adding too much catalyst, causing resin to gel before it has saturated the glass material.Resin in that state will neither penetrate nor stick to the glass materials,yet it prevents their being wet out by the resin applied to succeeding layers. Thus, glass materials that were to have been saturated remain dry, crumbly, relatively soft, and vulnerable to the passage of water. Another name for this condition is resin starved;because there is really no undercured resin present, one can readily tell the difference. The ways in which the two faults cause a laminate to fail are very similar, but while there is some hope of completing the cure of undercured resin, there can be no hope at all of curing the nonexistent resin in a resinstarved laminate. At least one case has been published in which the undercured hull of a cruising sailboat fresh from the factory began to crumble during a shakedown sail in preparation for a transpacific cruise. I myself have seen half the deck of a new boat go soft before the boat was launched; another time the resin washed out of most of one side of a two=month-old motorboat as the sat on her mooring.In yet another case in which I was involved, one side of the after end of a sailboat’s hollow keel leaked for the first half of the summer. The owner had the dealer haul her out, and they found about two square feet of the laminate to be soft and porous, and so sent her back to the factory.. Fortunately, such cases are rare, and even small areas that “go soft” are not everyday occurrences. Of course that may be little comfort to you if you are reading this because some part of your boat is leaking water through the laminate, getting suspiciously flexible under pressure, or turning out to more closely resemble cookie filling than flint-hard fiberglass. Go back to the manufacturer-if possible By definition, undercure is the weak, vulnerable condition of a laminate in which the resin has not completely cured. There are a 116 dercured, Resin-Rich, and Cooked Laminates Number of possible cause: Perhaps the catalyst wasn’t well mixed throughout the resin; perhaps not enough was used, or it was weaker than it should have been, or the resin itself was improperly formulated or applied under adverse conditions. Whatever the cause, undercure owes its existence to the boat’s manufacture, as does resin starvation. Therefore, if you find either, the manufacturer should be contacted immediately. If a dealer was involved, and nowdays one usually is, he will probably help you, and because he buys more boats, his leverage with the manufacturer may be greater than yours. Because they have reputations to protect, it is in the best interests of both the dealer and manufacturer to clear up your problem as expeditiously as possible. It is possible that the manufacturer received faulty materials, and the problem was therefore not directly his fault. I have been involved in similar cases myself, and have known the material vendors to fund the replacement or rebuilding of the part. It is most logical for you, the customer, to start with the one who sold you the boat, then work back if you must. Unfortunately, I must admit I have been right in the middle of cases where no one would do anything for the owner until he went to court and let the judge decide who, if anyone, should pay. I do hope you don’t have to go that route: It’s a long, enervating process, suited only to masochists. Since this book is about repair, it is probably too late to warn you to examine carefully the guarantee against defective materials and workmanship in the sales contract before you buy a new boat. It is equally important to subject the reputations of both the dealer and the builder to the same scrutiny. Here’s why: I once consulted on needed repairs to a newly built diesel trawler yacht with three integral fiberglass fuel tanks between her stringers, under the hand-laid teak parquetry of her large after-staterroom sole. The tanks were undercured, and had begun to dissolve, and the owner had not been able to leave harbor for two seasons without having glass fibers clog the fuel filters and stop the engines. When the cause was determined, and it was realized that the tanks extended not only under the entire sole, but under built-in teak berths and dressers on three sides as well, a boatuilder was hired, who, in an attempt to harden up the undercured gelcoat and resin, painted the interior of the tanks through inspection plates with a “hot mix” of resin. But the undercure was not just skin deep, and despite steam cleaning, traces of fuel oil probably inhibited the work as well. Flakes of the new resin coat soon began to appear in the filters along with the ubiquitious glass fibers, leaving no alternative but to remove the sole and cut off the tops of the three tanks. Only then could the undercure be treated and new tanks built within the same spaces. It would have been cheaper to abandon those tanks and install new ones elsewhere, but, without spoiling the boat’s arrangement or performance, there were no other suitable spaces for such large capacity tanks, and that fuel capacity was one of the owner’s main considerations in her purchase. The repairs finally cost around twenty thousand dollars; the foreign builder refused to pay, and was beyond the reach of this country’s law. Fortunately for the owner the dealer was found liable, and the owner eventually received full compensation. How to repair undercure—if you must Investigate the condition Determine the perimeter of the affected area, starting with such nondestructive tactics as examining, pressing, and tapping both the exterior and interior surfaces. A Barcol Impressor, if you can find one to borrow, is a simple spring-loaded device with a sharp pin which, when held against the surface, might tell you a bit more accurately where there is undercure than will tapping with a hard object. To use it, you need to know what numbers at the low end of the Barcol scale in- How to Repair Undercure—If You Must 117 Indicate a bad laminate, and what high numbers indicate a fully cured laminate for the type of resin and fillers or reinforcements used in your boat. A reading down around 25 is said to indicate a very bad laminate, while one in the 45 to 50 range is characteristic of a good one. Of course, an impressor held against the gelcoat cannot tell you what’s going on in the middle of a thick or cored laminate. Tapping is still a valuable technique. Probe the undercured area at some spot that will not be too difficult to refinish, attacking it from the interior or an inconspicuous spot on the exterior, to determine the depth of the undercured portion of the laminate. A small hole saw can bring out a nice sample for this. It goes without saying that if water has been leaking through the laminate it is undercured all the way through, or so nearly so that the surface has cracked, letting water pass through the thin crust that did cure. Because radiant heat and the actinic rays(violet and ultraviolet) of light, especially sunlight, tend to cure resin, undercured areas often have a crust that is slightly more cured than the interior. Another factor that tends to hide undercure is that gelcoat, being separately catalyzed and applied, is usually well cured whether the underlying fiberglass layers are or not. Careful boatbuilders, to prevent rovings and cores from “printing” their patterns through the gelcoat, also allow the first “veiling” layers of mat or chop laid up over gelcoat to cure hard before continuing with the laminate. The ensuing stiff crust effectively conceals any undercure beneath it , but is barely strong enough to support the boat’s weight before launching or the weight of workmen stepping on it (if it is part of the deck laminate), never mind withstand the rigors of the marine environment. Any given layer or layers of the laminate can evidence some degree of undercure; different areas may have received different batches of catalyst or resin during lamination, or been locally deprived of catalyst. Make your best judgment of what fraction of the part’s area and thickness are affected. Plan the repair General undercure is usually uncurable with catalyst or catalyzed resin. There’s just no way you can get these into the laminate’s interior, and even if you can reach the affected area, the catalyst’s reaction will travel only a short way into the undercured resin. If you can cut out the layers overlying or underlying the affected region and still leave enough cured laminate to retain the part’s shape, you can rebuild the laminate from there back to the surface. If most of the laminate is undercured, however, you may need a new part. There is, nevertheless, some hope of completing the cure if you have the time and patience. Hope lies in the following: Resin will eventually cure by itself—even when sealed and stored in a container. Heat causes resin to cure. Check with the manufacturer. I’ve found 150°to 180℉ a safe Range for this. As mentioned, the actinic rays of light, and especially sunlight, have a powerful curing effect on resin. Thus, the presence of catalyst is not essential to complete the cure. Rather, the catalyst’s role is to encourage and speed up the cure under normal conditions of temperature and light. Given time, your undercured boat part will tend to harden, but are you willing to wait? It’s a relatively sure thing, but no one can predict the time required in a particular case without knowing a number of variables, some of which will almost certainly remain unknown. The fact that cold curing could take years may turn off many owners. But if the affected area can be kept heated, exposed to strong sunlight, or both, the process can, depending on the undercure’s extent, severity, and location, be reduced to months, weeks, or even days. When working to complete the cure, remember: The part must be kept dry. Nothing inhibits the cure of resin more than moisture. No way should the boat be in the water or exposed to mist, dew, or rain. The part must be kept warm. Cold temperatures inhibit the cure, which is why 118 resin’s shelf life is extended by refrigeration. Thus, to accelerate the cure, the warmer the better—but don’t exceed the boiling point of water without the benefit of expert advice. Plenty of light will help—especially sunlight, but also artificial light or heat lamps directed at local spots of undercure. Support the part with care and watch for signs of sagging or warping. Years ago, when we were finishing off a line of catboats at my shop, the molder used to unload the hulls and decks outside, where they would sit for weeks—an empty resin barrel under each side of the deadrise—until we were ready to take them in. One day the men brought in one with a large hollow in each side of her bottom, where she’d been sitting on the barrels. Obviously, she had come in undercured, but she was cured now. We had to build out those barrel hollows with more laminate, an example of an undercure that got cured too well too soon. If you decide to cut out the undercured area, follow the guidelines for repairing holes, using tapered edges and placing backing on one side or the other on which to build up the patch. If the surface is smooth and fair, and shapely enough to require it, you can lay up over it a backing piece or temporary mold before you cut the hole. When the hole is cut and its edges tapered, put the mold back in place, well waxed, and lay up a perfectly shaped patch against it. Do make sure the surface over which you lay up the mold is well cured and well protected with wax and PVA, for the mold’s freshly catalyzed resin would sure like to find an undercured surface with which to bond forever. Resin-rich and cooked laminates These problem laminates both appear hard and strong, but are actually brittle. Each may evidence itself by an area of developing cracks, or by suffering extensive damage from seemingly minor injuries. Recognizing resin richness A resin-rich laminate is normal in most respects, but, as the name implies, it contains much more resin than reinforcing glass fibers. During manufacture, resin-rich sections of laminate are most likely to occur in low spots, where resin accumulates and puddles, although a degree of resin richness can be achieved anywhere during lay-up by flooding the laminate with resin and not rolling out the excess. Burning a sample is the standard test to determine the percentage of resin and glass fibers in a given laminate. The resin will burn away, leaving the glass fibers intact, so that you can actually identify and count the layers used in the lay-up. By weighing the sample before and after burning, you can readily calculate the percentage of resin to glass. CAUTION: Once it gets going, fiber-glass resin burns hot and fast, with a foul, toxic, smoke, so do it in a fireproof, well-ventilated, and preferably outdoor location. Fifty-fifty is an ideal rarely reached, but percentages all the way down to 70 percent resin and 30 percent glass are considered acceptable in the trade. The reason for such a wide tolerance is that more resin increases the total thickness of the laminate; because the materials are spread out more, given equal quantities of glass reinforcement, a thicker laminate is stronger than a thin one. Repairing resin-rich areas Unfortunately, the only way to repair resin richness is to add more layers of laminate containing a proper percentage of glass reinforcement; if that is for some reason impractical, then you are faced with cutting the area away and replacing it. Nonwoven types of roving, such as biaxial (which comprises two unidirectional layers stitched together), would add the most strength with the least bulk; adding layers to both sides would be stronger than adding to only one, but, as always, there should be more layers on the outside than on the inside. The photographs on the following pages depict fiberglass boat repairs in a Connecticut boatyard. They show more eloquently than words that virtually any damage is repairable, and the repair can be made at least as strong and handsome as the surrounding undamaged area. ALL the techniques and procedures mentioned in the captions are discussed in detail in this book. (Photos by James M. Curry, Killingworth, CT) Following seven photographs: Repairs to delamination in the balsa-cored deck of a stock 40-foot cruising sailboat, as discussed in Chapter 5. Leakage around traveler bolts saturated and rotted the core and caused extensive delamination. The size of the area was determined by sounding with a hammer, and the outline marked on the deck. 1. The outer skin is cut out using a circular saw with a carbide blade. 2. The outer skin removed, showing discoloration from the rotted core. The dark splotches are a polyester filler used to fill the bolt holes so that the new core and outer skin can be vacuum bagged. (Vacuum bagging can help achieve an even bond of core to fiber-glass and an optimum ratio of glass fiber to resin, but it is by no means necessary and is not discussed in this book.) 3. The new core is bedded in resin putty for a good bond to the inner skin. 4. Holes have been bored in the core for the traveler and hardware bolt compression points, which will prevent crushing of the core when the bolts are tightened. These holes are now being filled with a resin putty chopped fiberglass strand mix. 5. Wetting out the new core preparatory to laying up the outer skin. 6. Precut pieces of fiberglass are set in place… 7. …and wet out. Proper laminate schedules and techniques for deck repairs are discussed in Chapter 5. Top: Grinding back the fairing compound and outer skin of a holed 48-foot racing sloop. The Klegecell core (pink areas) has been removed. The glass is usually beveled 10 to 1—that is, 5 inches wide for a 1/2-inch thickness—but 12 to builds in an added margin of durability. Middle: Fairing the repair of the boat in the previous photo with epoxy microballoon fairing compound. As mentioned in several places in this book, polyester fairing putty is acceptable for this purpose. Epoxy putty is more durable, more water-resistant, and bonds more tenaciously. Bottom: Chopping back the fairing compound on a foam-cored ocean racer. The Klegecell core has been removed, exposing the carbon fiber inner skin, which will be repaired after the core and unidirectional S glass outer skin are in place. As Chapter 1 discusses, S glass and carbon fiber are expensive, and their use is mainly restricted to high-performance sail and power boats. On this page; Repair to a balsa-cored Tiara 36 powerboats. The topsides above the knuckle are solid fiberglass. 1. Starboard side: Standard layup of biaxial roving in the solid section above the knuckle and in areas of minor damage to the outer skin in the cored areas. The balsa core has been cut back for replacement where the damage was more extensive. 2. Port side aft: Repair have been made to the inner skin below the knuckle, prior to installation of the replacement core. A new solid glass section has been laid up on a bench to fill in the topsides above the knuckle, and is now being glassed in place. 3. The new topside section is being faired prior to closing in the inner skin at the corner. 4. The inner skin repairs are complete and ready for fairing and installation of the core and outer skin. 5. Starboard side aft: The core and outer skin in place and being faired. The excess glass in the overlap is being planed off with a carbide-blade hand power plane, which is faster for rough fairing than using a grinder, but not markedly so for small repairs. This workman should be wearing goggles and a toxic-dust mask. 6. The finished Tiara after final recoating (in this case with Awlgrip), as discussed in Chapter 2. 119 Cooked resin Cooked resin is resin that became overheated during cure, making it darker in color, very brittle, and prone to crumble. Surprisingly, once resin has fully cured it can withstand very high temperatures: it won’t ignite until heated to between 800°and 900℉ . Where resin puddles in a deep, confined recess, or is cast in large volume, or when a very thick laminate is laid up at one time without either adjusting the catalyst to compensate or using a special, low-exotherm casting resin, the resin may build up too much exothermic heat, begin to smoke, become cooked, and consequently have little or no strength. Unfortunately, there is nothing you can do about it, except cut it out and replace it, or encapsulate it in a sufficiently strong laminate. Again, the burn test can determine for sure whether this is a cooked or resin-rich laminate: it would help to know. To recap, resin-rich or cooked-resin conditions are created by the manufacturer, and if possible that’s the first place to turn for help. If you have to repair either condition yourself, the procedures are much the same. The only difference will be in the extent of the repair or the amount of reinforcing material needed. 120 CHAPTER 8 Repairing Keels and Other Underwater Parts Damage to hollow fiberglass keels One of my pet peeves is that the hollow fiberglass keels on motorboats and sailboats of traditional design are as hollow as they are. For many years I have been comparing the thin skins most manufacturers use in their keels, deadwoods, and skegs with the solid oak or yellow pine counterparts traditionally used in most wooden boats. It’s as if these builders have never heard of rocks or coral and think that all bodies of water have ooze bottoms. They schedule their keels’ skins to withstand being lifted in slings, or sitting on blocks ashore, as if these are the worst forces their boats will ever encounter. If, however, you have a cracked or holed hollow fiberglass keel, you at least know better. Even if you only have an annoying weep around the rudder hardware or a shaft log that is fastened through relatively thin fiberglass’, you may be wondering why these regions of the hollow keel couldn’t have been built up or filled in solidly enough to prevent leaks around the hardware. They certainly could have been—and should have been. If you learn nothing else from this chapter it will have been worthwhile if you are encouraged to build up a thicker laminate while making your repairs, or to fill in these vulnerable areas with solid reinforced keel putty, or both. Cracks and fractures If you have examined a spot where water is dripping from your keel and have found a crack in its bottom face, it is likely that the keel came down hard on a ledge or very hard bottom. If the crack is fore and aft down the centerline of the boat, then she might be one whose two sides were at least partly laid up in the two halves of a split mold, then joined with layers crossing the centerline after assembling the mold. You can determine this by cleaning off the bottom paint, for no builder that I know of grinds and fills the “flash” or line perfectly where the two halves of the mold meet along the bottom of the keel. Why bother where it is not seen? At the same time, an athwart ships crack does not necessarily mean that the boat does not have a certain line join. I’ve seen at least one boat with a crack at 90 degrees to the join, which simply indicated to me that the bottom of the keel was struck evenly and folded upward to the breaking point along the line of contact. If you have been unlucky, and your boat has sustained one or more chewy fractures from a more lingering contact with rocky bottom, the repair needed will be about the same as is needed for a single, relatively clean crack. In either case, the existence of a break that extends all the way through the laminate demands a patch that also extends all the way through at the point of the break. The patch should taper out to the surface all around it at the recommended scarf width of approximately 12 times the thickness of the laminate. 121 In most cases, the best approach is to build the patch from the outside of the boat, because the inside is too confined and inaccessible. Indeed, you may be physically excluded from the interior in the damaged area by encapsulated lead ballast or integral tanks in a sailboat; also, there may be an on-center engine, propeller shaft, or related gear that would be too expensive to move out of the way in any craft. Not to worry, almost everything you have to do to effect a sound repair can be done from the outside. There are, however, two operations on the interior that you should seriously consider: (1)If the bilge is oil-saturated, or if the damage is in the way of an integral fuel tank, these should be steamed out before you patch the keel. (2) If the laminate is weaker than it ought to be (perhaps it broke too easily in your opinion), yet it is not feasible or aesthetically practical to add to it on the exterior, then you should reinforce it on the inside. If you decide that additional laminate must be added from the inside, steam cleaning will be necessary or there will be no adhesion. In any event, damage that breaches the watertight integrity of the keel provides an excellent excuse for cleaning the keel sump and bilges. A great tool for this job is a Steam Jenny or steam cleaner rented from a tool rental shop or possibly from an auto repair garage. A steam cleaner is a portable machine that pumps out a stream of steam, which literally melts grease and oily sludge away. For a badly fouled bilge, you can add detergents; then you can make a final, drying wipe-down with an acetone-soak rag. Caution: Take care not to develop an explosive mixture of air and acetone fumes! Always provide good ventilation when working with volatile solvents in enclosed spaces. Holes in the keel Holes in the hollow keel need essentially the same kind of treatment as cracks and fractures. The only difference is that they will need a backing on which to get the lay-up started, or if there is a huge missing area, a hole will require a form or mold-like structure on which to lay up the new piece. With extensive damage, it is likely that a part of the interior will be demolished, giving you better access to the interior than if there is only local damage to the keel itself. That opens up two course of action: Either you can fit some backing on the outside and build up the new laminate from inside the boat, or you may be able to fit some backing in flush with the interior surface of the hollow keel, build up the new laminate from the outside, and then remove the backing from the bilge. The exact thickness of the laminate is unimportant in the hollow keel or bilge area, except where tanks or other items fit within its walls without much clearance. As a result, an excellent way to start in replacing a big piece of keel with a lot of shape would be to fit pieces of sheet fiberglass to the inside of the hollow keel. Sheets of fiberglass can be made of a single layer of woven roving laid up on a waxed table. This method (Figure 8-1) was described in Chapter 6. The sheets of fiberglass are cut into strips or other shaped pieces as necessary and bent to any curves while still “green” or semicured. Hard curves, those that cannot be bent in the green laminate, can be laid up over appropriately shaped waxed objects. Temporary members of wood can be fitted within the keel as needed to serve as a form for the sheet fiberglass, and then removed after the laminate has been built on it. Copper or brass nails or bronze staples are used to fasten the sheets of fiberglass pieces to the wood, then clipped or ground off after the laminate has been built and the wood pulled out. It should be mentioned that when sheets of fiberglass are used as the starting material for a laminate, it is customary to overlap the various strips or pieces. This is because the single thickness of woven roving used to make the sheet is so thin that by the time a few layers are built up over the ridges caused by the overlap, the ridges have just about disappeared. 122 Figure 8-1.Large, shapely, heavily damaged areas are most easily repaired with sheets of “green” fiberglass. Weeps around metal hardware Fiberglass is not inclined to stick to metal or to stay stuck to it for long, so a watertight fit around hardware or fastenings is ultimately dependent either upon the tightness of the fit or upon a bedding material between the metal and the fiberglass. When a laminate laid up around metal shrinks tightly against it, or an object with tapered threads is screwed into a hole in the glass, the pressure of one material against the other excludes water fairly well. Such a joint will remain watertight until some force such as differential contraction and expansion, penetration by corrosion, a slow wedging apart by freezing moisture, or a contraction vibration or ending works the metal loose. Knowing that the watertight integrity of metal passing through a fiberglass skin is not particularly trustworthy, most builders use a secondary seal of bedding compound or filled resin glue, or they use a preformed gasket under the metal hardware or around its fastenings. Many such sealants work long enough to free the manufacturer of blame when they fail, but, as you may have learned (to your intense annoyance), all fail sooner or later. A further sad commentary is that the longest-lasting sealants tend to be the most expensive and the most messy and time-consuming to apply. As a result, only builders who are dedicated to building a durable product use them. The above paragraph may seem to be too much of an explanation for the weeping of such fitting as metal shaft logs, rudderports, pintles, gudgeons, heel fittings, skegs, and other metal fittings in or about the keel. My purpose, however, is to lay out the causes in detail so that we may dismiss any notion that the weeping or eventual leaking of underwater fittings is something you have to live with. You can, of course, replace the bedding compound under any piece of hardware. Take it off, clean it and the underlying fiberglass, and reinstall it over fresh bedding. Use a high-quality bedding that is as tenacious and immune to penetration by water as possible. 123 Through hulls Actually, rebedding is all you can do to fittings of the through-hull type, which are made with an exterior flange and an interior nut on a threaded body. These fittings are intended to be clamped against both sides of a single skin with bedding under the flange, under the nut, and lining the hole (Figure 8-3). Usually, they don’t give much trouble for many years, unless something is wrong with their installation or they are wasted by corrosion. Incidentally, is has never been a good idea to switch to molded plastic through hulls for underwater use. As you may have noticed, builders dearly like to substitute these much less expensive items for metal, but so far they have confined the use of plastic through hulls to above the waterline. The reason is simple: they are more easily broken. There is always a chance that a heavy object, such as a spare anchor, might be thrown against them, suddenly opening a bad leak. There is usually no core in the laminate of a hollow keel, but as discussed in the chapter on core problems, the area around the hole for any through hull installed through sandwich construction should be of solid fiberglass. The edge of the core should not be exposed by the hole. This can be accomplished by cutting out a patch of the inner skin and core and then building up the inner face of the outside skin with layers of fiberglass. This will make the outer skin thicker and also seal off the core if some of the layers are turned up and out to overlap the inner skin of the sandwich (Figure 8-4). Figure 8-3.Weeping through hulls can be eliminated by judicious applications of sealant between the hull and fitting. Silicone sealants work well underwater; polysulfide adhesive sealant is an excellent choice; polyurethanes, such as 3M 5200, provide a permanent bond. For maximum insurance, bed under the nut as well. 。 If you suspect that the single skin in which a through hull is installed is too thin and flexible to have a through-hull fitting in it, by all means build up a pad of extra laminate, or cut a block of fiberglass from a thick sheet and install it by bedding it in resin and wet mat, to stiffen the area around the fitting. Despite the fact that it was common practice in wooden boats, I would not use wood for this, especially in the dank recesses of the bilge or hollow keel. It will not last as long as the fiberglass and no one will remember to poke it for softness every year or two; to use wood is just asking for trouble someday. Replacement with fiberglass through hulls There is another way to treat through hulls, particularly those that are directly connected with hose and do not have seacocks or valves on them. You can replace them with a through hull of fiberglass tubing that is fiberglassed to the hull. Fiberglass through hulls are frequently used for cockpit scuppers, deck drains, exhaust lines, bilge pumps, and occasionally for sink or toiler outlets. Fiberglass through hulls are best where a seacock is not required to shut off the flow into a piece of equipment, and where they can be carried above the waterline as a one-piece tube fiberglassed to the hull, with no joints below the waterline. Figure 8-4.Through hulls installed through cored hulls require extra attentional to avoid core saturation. 124 What could happen to a stout piece of fiberglass tubing that is “welded” to the hull and carried above the waterline? While we can’t say positively how long it will last—any more than we can say how long a boat will last—I have surveyed a number of boats up to 30 years old with fiberglass through hulls that appeared to be no less viable than when they were built. I was once startled to find that the hose on a cockpit scupper through hull in a 25-year-old sloop had a hole just above the waterline that I could put my finger through, Perhaps the hose was as old as the boat. Who knows how many seasons it had been leaking. Fortunately, because the fiberglass through-hull tube extended above the waterline, she had not yet settled quietly to the bottom when left unattended on her mooring. Yes, integral fiberglass through hulls are probably the most durable and trouble-free in the long run , especially when they can be carried above the waterline. Nor can there be any doubt that they save both installation and maintenance expense when they eliminate seacocks or valves. Seacocks are often forgotten by the owner, and are sometimes so frozen with corrosion after awhile that they can break if you try to use them in an emergency. Fiberglass tubing for various sizes of through hulls can be purchased ready-made, or you can make up tubes yourself if you want to bother (see below). At the same time, if you want a value in the line, it is best to install a seacock right at the hull on a threaded bronze through hull, for there is no reliable way to connect a seacock’s metal body to a fiberglass through hull. Despite my appreciation for the simplicity of the fiberglass through hull, do not underrate the ruggedness of a bronze through hull flange and the nut that clamps it to the hull. In the past, when bronze underwater fittings were regularly used, if they were well maintained and not undermined by eletrolysis or corrosion, they sometimes lasted so well that they were taken from a worn-out wooden hull to be used in the construction of a new vessel. Shaft logs and rudderports Shaft logs and rudderports are two other pieces of through-hull hardware that are more trouble-free when they consist of a fiberglass tube glassed into the hull. If you have a bolted-on bronze stern bearing/stuffing box unit that has been knocked loose from its location, or if your rubber has been knocked around and torn the bronze stuffing box/bearing off its boss on the interior of your hull’s laminate, then you know how easily disrupted these installations are. Unfortunately, the use of these bronze casting is but a carryover from wooden boatbuilding methods to fiberglass boatbuilding. Few events have caused more floodings of fiberglass powerboats than those in which bronze stuffing box/bearing units were torn loose. To make matters worse, they are much more expensive to buy and to install than a fiberglass shaft log or rudderport. A fiberglass rudderport or shaft log needs but a rubber bearing in a bronze sleeve at its outboard end and a “rubber neck” (a short length of rubber hose) with a bronze stuffing box attached at the inboard end. One can marry this type of rig to the laminate and surround it with fiberglass reinforcement until nothing short of total destruction of the surrounding hull could open it up. A fiberglass shaft log through a hollow keel is very easily and cheaply buried in a solid section of the keel, rivaling the solid oak keel timbers of yore. This can be done by setting up a dam immediately aft of the rubber neck of the stuffing box and pouring in reinforced resin. In confined or low-volume situations, regular general-purpose polyester resin and chopped or milled glass fibers can be used. In large-volume areas (wide or deep hollow keels), polyester casting resin will eliminate the danger of overheating when the mass cures. In addition to milled glass fibers, there are a number of other reinforcing materials that can be used to cut the cost and weight of the compound. You need not mix up your own compound if you don’t want to, for suppliers to boatbuilders carry a number of reinforced resin compounds suitable for filling hollow keels. 125 Once a shaft log is buried in keel putty, I like to cover it with a laminate of alternating biaxial roving and mat that extends well onto the hull laminate on each side. It is not difficult to incorporate a rudderport of fiberglass tubing solidly into a reinforcing buildup of the laminate where it enters the hull. The upper portion of the tube can be braced with knees or other glassed-in supports. In addition, a rudder stock should have a strong upper bearing placed as high as feasible to keep it from prying a chunk out of the hull if the rudder is badly battered. Like the fiberglass shaft log, the fiberglass ruddernport is better, cheaper, and has an indefinite life expectancy. Of course, a rubber-necked stuffing box or other sealing cap around the rudder stock should be fitted atop the fiberglass rudderport, unless the tube extends so high above the waterline that it is not needed. In tiller-steered sailboats, where the rudderport is often carried into the cockpit or above the after deck, the fiberglass tube is a natural, for it can be easily fiberglass to the hull and to the cockpit sole or to the deck. Thus there are two ways to repair a metal rudderport tube which has been loosened or knocked out of place where it was glassed or mechanically fastened to the hull: First, as long as the metal port is still usable (perhaps it is only loose and leaking where it is attached to the hull), you can refiberglass it. This time, however, wrap the metal port with fiberglass all the way up to the underside of the sole or deck, and fiberglass it well to the underside of that laminate, too (Figure 8-5). In effect, this gives you a fiberglass rudderport lined with a metal one, which cannot leak anywhere between the hull and sole or deck. If you use this method, you should make sure that the ends of the metal port are sealed where they project through the hull at the bottom and the sole or deck at the top, by cleaning out the crack between the metal and the laminate and working some bedding into it, or by rebedding any nut, block, or metal collar around it on the exterior surface. This is needed to keep water from penetrating the laminate, especially in cold climates where freezing can enlarge any tiny pool. 。 Figure 8-5.A metal rudder-shaft tube can be an irritating source of leaks. Eliminate them by encasing the tube in fiberglass for its entire length. If, however, the metal port is destroyed, you can replace the whole unit with a fiberglass rudderport, stoutly glassed in place at each juncture with the hull and deck laminate (Figure 8-6).There should be a bearing fitted in the bottom of the tube, extending from the outer surface of the hull upward. This can be a rubber-lined bronze insert of the type used on propeller shafts (a cutlass bearing), as long as it is at or below the waterline so it gets the water lubrication that these rubber bearing must have. The bearing can also be an insert made of one of the nylon-like plastic, or it can simply be a bronze bearing made from a piece of fairly close-fitting “red brass” pipe. Making fiberglass tube fittings Because manufactured fiberglass tubing is now easy to buy, it is rarely worthwhile to make it up yourself. Still, when you are in more of a hurry than the supplier is, or when you are faced with a situation in which an odd size or shape of tubing would be better than anything readily available, you can certainly make the tubing yourself. 126 Figure 8-6.If the metal rudderport is destroyed, replace it with a fiberglass tube. To make your own fiberglass tubing, the first step is to find a form or mandrel on which to lay it up. Almost any cylindrical object will do, if its outside diameter matches the inside diameter of the tube you want to make. This can be anything from a cardboard tube to a metal pipe or piece of shafting, as long as the material is unaffected by resin and is not too unwieldy to rotate easily while you lay up fiberglass around it. The ideal mandrel would be one turned out of wood on a lathe. If the tube to be laid up on it is a shaft log or rudderport, the mandrel can be turned to the same diameter at the outboard end as the bearing that will be pressed in (Figure 8-7). Regardless of the tube’s purpose, the inboard end of the mandrel can be turned to the proper diameter so that a tube laid up to a given skin thickness will have the right outside diameter to accept the hose that will be clamped onto it. Finally, with the lathe bed and other parts protected from dripping resin, you could even lay up the tube with the mandrel mounted on the lathe. The lathe would have to turn very slowly, maybe 10 to 20 turns a minute, while the tube is laid up, and then be left turning while the resin cures. Figure 8-7.Fiberglass stern tubes can be laid up over a wooden mandrel on a lathe to the correct size. 127 Nice as a lathe is, it is not at all necessary. I have made all kinds of tubes without that luxury, inclu ding a recent patch and a new heel piece on a sailboard mast. It really is only important to set up some sort of bearings, if only a V-notched block beyond each end of the work area, in which the mandrel can be rotated by hand. A spindle, such as a nail in each end of the mandrel, can also be used to rotate the work between a pair of boards. As long as you can put together a mandrel out of a cylindrical “found” object and rig it up to be turned, you’re in business. There are two pitfalls to watch out for when laminateing a fiberglass tube. First, don’t let the tube stick to the mandrel; wax the mandrel heavily. Also, don’t let the tube shrink so tightly around a solid, unyielding form that you must destroy the tube to get it off. One way to avoid this is to make the mandrel from a destructible material such as cardboard. Another alternative is to slice the mandrel lengthwise to make a removable wedge of its center portion. If the mandrel is made of metal, then you should lay up a thin laminate, make a lengthwise cut in it with a sharp knife while it is still green, then pry it off and finish laminating it on a looser fitting mandrel. If you are building a fiberglass shaft log or rudderport, you can set up the mandrel with the cutlass bearing on its outboard end. Then, after waxing the bearing to facilitate pressing it out someday when it needs replacement, let the laminated tube shrink tightly around it. As a precaution against its working loose, you should lay up a threaded nut or small piece of bronze that can be bored and threaded for a set screw on each side of the bearing near the outboard end of the tube. You can wind a tube with any of the fiberglass fabrics, but the simplest method is to use a strip of fiberglass cloth as wide as the tube is long and at least as long as several tube circumferences. As you wind it on by rotating the mandrel, the fabric wets out easily and can be pulled tight enough to squeeze out the excess resin without fear of pulling the tube apart. The reason why cloth is preferred over woven roving is that it is soft enough to conform to the shape easily, thereby helping to prevent voids in the laminate. For the safest possible arrangement, I like to use a layer or two of mat both at the beginning and the end of the laminate. Cloth peels easily; without a layer of mat over it, there’s a slight possibility that a loose strand could wind up on the shaft if it is exposed to wear on the inside of a shaft log. On the outside of any through-hull tube, mat will improve the adhesion of the fiberglass which bonds it to the hull. Mat is by far the most waterproof of all fiberglass fabrics, a virtue never more important than in an underwater through-hull fitting. Sealing through-bolted hardware While you have the choice of replacing some metal through-hull fitting with fiberglass ones, there are other, bolted-on metal parts for which there are no substitutes. These are the most likely fittings to be seen leaking in any collection of hauled-out boats. These through-bolted fittings include rudder heel fittings and intermediate pintles or gudgeons on sailboats. Regardless of how these fittings are bolted or riveted to the hull, if the bolts or rivets terminate inside a hollow fiberglass keel, sooner or later the fittings will work loose and begin to leak. Worse, such a fitting can be knocked loose, perhaps taking some of the hollow keel with it. As you may have learned from experience, a small leak from bedding that lost its grip and washed away does not always require immediate attention, but few boats can survive the inundation that breaking out a piece of the hollow keel can cause. Over the years, many floodings have been traced to hardware broken out of hollow keels. Most of these could have been avoided if the region through which the hardware was bolted had been sealed off from the rest of the bilge. Whether you are simply repairing a weep from such a fitting, installing a replacement for a damaged part, or rebuilding a keel from which one or more fittings have disappeared, I recommend that you fill the region solid with keel putty, lay up fiberglass over the bolts and nuts on the inside of the keel, or better yet, do both. 128 Fixing fin keels and separate skegs Perhaps it was the ease of laying up a canoebodied hull in fiberglass and bolting on a fin keel, versus the difficulty of laying up deep hulls with hollow keels. Perhaps it was the improved performance of short-keel designs combined with the readily adaptable fiberglass construction techniques. Even the switch to mobile sling lifts and cranes in boatyards may have had something to do with it (fin-keelers were always a nuisance to haul on a railway). Whatever the factors, boatyards and marinas today are filled with millions of fin-keeled, shallow-hulled sailboats with separate rudders. With the switch from the long, traditional keel to the short, fin keel have come new problems and different kinds of damage. With a fin-keeled boat, the force of a collision with a rock or a hard bottom, transmitted to a small area of the hull, is quite likely to damage the hull in the attachment area. The force of a similar collision is almost always dissipated in the longer attachment area of the traditional keel. With either type of keel, a collision with a hard bottom is likely to cause damage at the point of contact. With a fin keel, however, you should also look closely for damage to the hull in the area of the keel’s attachment. Looking for damage When a fin keel collides with the bottom, whether the boat is underway or driven ashore in a storm, the keel bashes the hull like a battering ram when it is struck from below, or it tries to break a section out of the hull when struck from forward, aft, or from either side. After a hard grounding, always look at the surface of the laminate around the top of the keel and on the adjacent hull surfaces for cracks that will often indicate more serious fractures. Blows to the side of the keel, whether from the keel striking the bottom or from the hull pounding as she lies on her side, can result in cracks along the curve or angle where the hull joins the keel. Fortunately, these cracks are rare because builders tend to beef up the laminate along either side of the keel to absorb the strains of heeling under sail. Many builders also install athwartships members similar to the floor timbers in wooden boats for added strength in that direction. Don’t let cracks in the gelcoat fool you into thinking that there are fractures in the laminate. Hairline cracks in the gelcoat alongside the keel-to-hull joint are often due to the fact that the gelcoat is more brittle than the laminate, and cracks as the hull flexes slightly when the boat is heeled over under sail. Stress cracks in the gelcoat tend to be fine, shallow, and more or less parallel to the top of the keel. A fracture, on the other hand, will be coarse, deep, and will often have broken strands of glass protruding from it. Naturally, if the crack is leaking, it is surely a fracture. On the inside of the hull, the laminate in the area of the crack may show broken glass fibers, or a white line may be visible in the dark laminate if it is unpainted or “raw” fiberglass. A fracture may appear as a dark line when the laminate is back-lighted, provided that the gelcoat is thin enough for light to penetrate the area from outside. Another way to differentiate between gelcoat cracks and fractures is by sound. Fractured fiberglass has a different sound than solid fiberglass when struck with a hard object, even when the solid laminate has gelcoat cracks. Should the gelcoat actually be flaking, it can sound a bit crunchy, but that, too, is a different sound from the unmistakable reverberation or “cracked” sound of a fractured laminate. Unfortunately, it may not be possible to view much of the interior of the hull in the keel attachment area without exploratory surgery. Builders seem to be providing fewer access hatches in the cabin sole, and they have tended recently to make them smaller. As a result, I have been involved in many repairs to hull fractures where the cost of cutting open the interior and then closing it up again was far greater than the cost of the repair. Should you suspect a fracture in the hull-to-keel joint area, don’t be hasty about cutting open the sole. First, examine the exterior carefully. 129 In my experience, the most frequent damage to the hull caused by a fin keel is an athwartships break in the laminate just forward or just aft of the keel, and occasionally in both areas (Figure 8-8).This type of damage is caused when the boat is in forward motion and the fin’s lower end is stopped dead by a collision. The fin tries to rotate, stretching the laminate down at the forward end of the keel and folding the laminate up into the hull at the after end. So powerful is this concentration of pressure at the ends of the keel’s attachment that even an extra-thick laminate often breaks all the way through and begins to weep. Apparently because fiberglass is stronger in tension than in compression, it is less likely that the laminate will be broken forward of the keel, where it is pulled down, than aft where it is pushed or buckled upward. Nevertheless, I have seen a number of boats in which it was broken at both ends. Making the repair The preferred method of repair for breaks in the hull around the keel is to grind them out in a very shallow V-shaped notch on the inside and build them back up with alternating layers of mat and unwoven roving. A majority of strands of roving (never less than half) should run across the break. There are good reasons for making the patch on the inside. First, making the repair on the inside of the hull helps to avoid having to fair, regelcoat, and smooth a large area of the outside surface. Applying the patch from the inside also allows extra layers to be added, reaching far out onto the surrounding laminate. Thus, a stronger laminate can be built up in the keel attachment area than existed before, again without the need for a lot of refinishing of the exterior surface. Despite the good reasons for working on the inside, you should study the boat carefully before ripping into the interior arrangement to repair a simple fracture or a clean break. It’s embarrassing to pull up a glued-down rug and cut a piece out of a hatchless sole (despicable as these features are), only to find one’s path to the damage blocked by a tank, a mast step, or a fiberglass table support. If much destruction and refurbishing of the interior will be required, it might be cheaper, faster, and less trouble to bite the bullet and make the repair on the outside of the hull. Working on the outside, of course, you simply reverse the procedure for patching on the inside. Grind out the break in a wide V that penetrates to the interior only along the actual break line. Then, fill the V back up with ever-widening pieces of alternating mat and biaxial roving. When the patch within the V is built up flush with or a bit above the surface, you must decide whether to fair the patch and finish it off flush, or to continue on with some additional layers. If you decide to apply additional reinforcement, each layer should extend farther out past the patch by a good distance, so that they taper into the shape of the bottom without making an unsightly bump. Figure 8-8.A hard grounding with a fin keel warrants a thorough examination. Whether you continue past the damaged area with additional layers depends upon whether you are satisfied that the patch laid up within the V is strong enough. If you made the V at least 12 time as wide as the thickness of the laminate, preferably wider, then your patch should be as strong as the original laminate. Laying up your patch thicker and wider will make the area stronger than it was when it broke, and will strengthen and waterproof any fractures or extensions of the break that may have gone undertected. A patch like this is good insurance, with the only significant added cost being the fairing and refinishing work. Fortunately, this type of finishing work is not as fussy and time-consuming to do below the waterline, where it will be covered with bottom paint, as it would be in the glossy topsides.
译文: 115 第7章 欠固化,富树脂及热用层压板 欠固化确实很罕见。由于关于欠固化这方面的图书文献出版的很少,所以我对欠固化的知识还不是很完善。对于建造者来说,欠固化是他们从来没有想到过的最糟糕的噩梦,这确实也没有什么令人吃惊的。当树脂没有固化性能时,玻璃纤维事实上是不存在的。它不过是大量浸透着透水物质的玻璃纤维材料层。存在不同程度的欠固化是必然的,从柔软态和黏结态程度到明显硬态和固态程度,但不完全固化除外。不完全固化可能会不定量地出现在特定部分,它会影响非常小的局部范围或者这个特定部分层。 另一个经常出现在层压板上的缺点叫做欠固化。但是,实际上应该叫做过固化,这是添加过多催化剂的结果,从而在玻璃材料使树脂饱和之前就转化为凝胶。在那种状态下,树脂既不能渗入玻璃材料也不能粘住玻璃材料。但是贴在后任层的树脂可以防止它们变湿。因此,之前本应已经渗透树脂使之饱和的玻璃材料依然保持干燥,脆弱,比较柔软的状态,水通过比较容易碎。这种状态的另一个名字叫做树脂贫乏。因为确实没有欠固化的树脂出现,很容易看出两者的区别。这两个缺点造成层压板出现问题的方式非常相似,但是尽管有一些希望将欠固化的树脂完成固化,却没有任何希望在贫树脂层压板上固化根本不存在的树脂。 至少有一个案例已经被公布,在准备横渡太平洋的一次试航中,一艘刚从制造厂出厂不久的新巡航帆船的欠固化船身就开始出现问题。在这艘船下水之前,我已经看到新船的半个甲板开始变软,另外一次船在抛锚时,我看到这艘只用了两个月的摩托艇一侧的大部分树脂已经被冲洗掉了。在另外一个我亲身经历的案例中,帆船凹陷的龙骨底部一侧出现了裂缝,裂缝时间达半个夏天之久。船主让厂家把帆船拖出来,他们发现约有两平米的层压板变软且出现气孔,所以他们把船送回了制造厂。 幸运的是,像这种例子非常罕见,甚至层压板小范围的变软在日常生活中也很少见。 如果你读到这部分,当然有可能会感觉有点不舒服,因为你的船的某些部分正在透过层压板漏水,在压力下奇怪地弯曲,或者出现比坚硬火石般玻璃纤维更多的类似薄脆饼干馅的东西。 如果可能的话,送到制造厂 从定义上来看,欠固化指层压板脆弱且易毁坏的状态,层压板上的树脂没有完全固化。 116 欠固化的形成有很多可能的原因:可能催化剂和树脂没有混合好,可能催化剂用得不够,或者催化剂性能比原来变弱,或者树脂本身规划不恰当,或者树脂在不利条件下使用。不管是什么原因,欠固化和树脂贫乏一样,都是在船的制造过程中形成的。因此,如果你发现欠固化和树脂贫乏的任何一种情况,应尽快联系制造商。如果这牵扯到经销商,目前经常会涉及到经销商,在这种情况下经销商很可能会为你提供帮助。因为经销商向制造商购买的船艇更多,他对制造商的影响力也比你强。由于经销商和制造商处于对自身信誉维护的考虑,他们会尽快解决你的问题,因为这符合他们的最大利益。 很有可能制造商会收到有毛病的材料, 因此问题的出现不是制造商的直接错误。 我亲身经历过这种案例,了解到材料供应商为替换提供资金或者重新组装部分零件。这是最合乎逻辑的,你作为客户是从与卖给你船的经销商接触开始,然后回到工作,如果你必须这样的话。 不幸的是,我必须承认在这些案例中间我是正确的,没有人愿意会为船主做任何事情,除非他去法院让法官判定谁应该赔偿。我确实希望你没有必要采取这种方式,因为这是一个长期的使人心力憔悴的过程,这种方式只适合于受虐狂者。 既然这本关于修理方面的书,可能有点晚提醒你,在购买一艘新船之前,应该仔细检查销售确认书上对有关反对有缺陷的材料和技艺的保证。对于经销商和制造商来说,同样的细查和他们的信誉一样重要。原因如下: 我曾经咨询过对新船进行必要维修的事宜,一艘新造的柴油拖网渔船游艇,在特等客舱尾部的手砌柚木镶花地板下面,在游艇的纵梁之间有三个必需的玻璃纤维燃料水槽。这些水槽是欠固化的,已经开始溶解,如果没有玻璃纤维阻碍燃料过滤和使引擎熄火的话,游艇的主人根本不能离开海港达半年之久。当原因被确定,会发现水槽不仅在整个船底,但在嵌入式柚木卧铺和梳妆台的三个侧面也会有。雇佣了一个船艇制造工人,他力图使欠固化的凝胶漆和树脂变得更为坚硬,通过检查板与树脂的热混合在水槽内部的涂抹油漆。但是欠固化不只是表面,尽管可以通过蒸汽清洁,但燃油痕迹也可能抑制它的作用。新树脂层的薄片不久开始和无处不在的玻璃纤维一起出现在过滤器里。这种情况没有任何选择,只能移除船底,切断三个燃料水槽的顶部。只有这样才可以处理欠固化,新的水槽建在同样的位置。丢弃这些便宜的旧水槽,在别处安装新的水槽。但是如果没有破坏船的安排和性能,没有其他合适的地方安装这么大容量的水槽,对于船主而言,在购买船艇的时候,燃料容量也应该是船主主要考虑的问题之一。维修的最终费用大约是两万美元。国外船艇制造商拒绝支付这一费用,这超出了这个国家的法律。对船主来说,幸运的是,会发现经销商是可靠的,船主最终可以拿到全部赔偿。 如何维修欠固化—如果你必须的话 调查情况 确定受影响区域的周界,然后开始采取使用一些非破坏性的方式,比如说在外侧表面和内部表面检查,按压和轻敲。如果你可以向人借用巴科压痕硬度计就更好了,巴科压痕硬度计是一种简单的附带分离引脚的弹簧加载装置,把它安装在外表面相反的位置,相对于用硬物打孔的方式,巴科压痕硬度计会更精确地告诉你出现欠固化的位置。使用巴科压痕硬度计时,你需要清楚在巴科压痕硬度计刻度的底端什么数字表明是欠固化的层压板,巴科压痕硬度计刻度上多高的数字可以表明完全固化的层压板,根据你的船艇使用的树脂和填料或者加固物的类型判断。 117 巴科压痕硬度计上的读数约在25度以下表明层压板欠固化,如果硬度计上的读数在45度到50度之间则表明层压板完全固化。当然,在厚层压板或者有心的层压板中间,如果有凝胶漆,硬度计则不能判断出情况如何。开孔也是一种很有价值的技术。 在欠固化区域的某些点上用探针探测后返工修光不是很困难,从层压板内部或者外部一个不明显的点攻击它,到确定层压板欠固化部分的深度。小孔锯可以钻出好的样品。 不言而喻,如果水正在穿过层压板渗透,水穿过的层压板部分都是欠固化的,或者几近欠固化以致于层压板表面出现破裂,让水通过固化的轻薄外壳。因为光的辐射热和光化射线(紫色的和紫外线的),尤其是太阳光,有助于固化树脂,欠固化区常有一层外壳,这层外壳比层压板内部更容易被固化。 另一个有助于消除欠固化的因素是分开催化和涂抹凝胶漆,这样通常也会很好地固化。不管在下面是否有玻璃纤维层。细致的造船人,使用凝胶漆的时候会避免涂抹改变粗纱和核心的样式,在继续和层压板粘在一起之前,造船人也允许附在凝胶漆上面的垫子或切片的第一层面纱固化牢固。接着产生的坚硬外壳会很快遮住在它下面的任何欠固化。但在下水之前,这仅仅足以牢固地支撑船艇的重量或者工人踩在上面的重量(如果它是甲板层压板的话), 不用担心承受海洋环境的折磨。 任何特定的层或者层压板的层能证实欠固化的程度, 不同的区域在制成薄片的过程中可能出现很多不同的催化剂或者树脂,或者局部会失去催化剂。你可以对收到欠固化影响的部分区域范围和欠固化的影响厚度做出最佳判断。 计划修复 一般欠固化通常用催化剂或催化树脂是不能修复的。你只是没有办法使催化剂或者催化树脂进入层压板的内部,即使你能使催化剂或者催化树脂进入受欠固化影响的区域,催化剂的反应也要需要经过一段过程才能进入欠固化的树脂。如果你能切去受欠固化影响区域上面或者下面的层,同时仍然保留足够的固化层压板,这样可以保持零部件的形状。你可能从那里开始到表面重建层压板。如果层压板的大部分面积都是欠固化的,不管怎样,你需要一个崭新的部件。 尽管如此,如果你有时间和耐心的话,你仍然还是有希望完全修复固化层压板。希望存在于下面几点: 树脂最终可以自己固化,甚至当它被密封储藏在容器时也会自己固化。 高温可以使树脂固化。跟制造商联系。我已经发现150华氏度到180华氏度的高温是使树脂固化的安全范围。 刚才上面提到过光的光化射线,尤其是太阳光的光化射线,对固化树脂有很强的效果。 因此,没有必要一定要用催化剂来完成层压板的固化。相反的是,催化剂所扮演的角色是在温度和光线正常的情况下促进和加快固化。在某个特定时间,你的船艇的欠固化部分往往会变硬,但是你是否愿意等待呢?这是比较肯定的事情,但是在不知道很多变数的情况下,没有人能预测在特定的案例中出现固化所需的时间。 冷固化可能需要花费很长时间,这样的事实往往使船主很厌烦。但是如果把层压板欠固化区放置在高温下,或者放置在强烈的太阳光下,或者把欠固化区既放置在高温状态下同时又放在强烈太阳光下,这样的话,固化修复的过程会缩短到几个月,几个星期或者甚至几天,当然,固化修复的过程根据欠固化的面积,深度和位置的不同所用的时间有所不同。当你正在做完成层压板固化的工作时,记住: 欠固化的部分必须保持干燥。没有什么比潮湿更能抑制树脂的固化。如果你的船艇放在水中或者放在雾气中,有露水的地方,或者甚至是雨水中,那么,想修复欠固化是不可能。 欠固化的部分必须保暖。很冷的温度会抑制层压板的固化。这是树脂为什么要靠冷藏的方法来延长保存期的原因。 118 大量的光有助于树脂固化—尤其是太阳光,但是直接固定聚光在欠固化区的人工光或者高温灯也有助于树脂固化。 小心支撑欠固化部位,观察下陷或者变形迹象。几年前,在我的店里,有一次我们马上就要完成一排独桅艇。用来卸载外面的船身和甲板的模塑,在斜升角每一侧的下方都有一个空的树脂桶,船身和甲板要放在模塑上好几周,直到我们准备把这些独桅艇都收起来。有一天,有人带来一艘在底部一侧有一个大洞的船艇,她被放置在桶上。很明显,她已经变得欠固化了,但是现在她已经被修复固化好了。我们必须用更多的层压板增建那些条盒型凹穴,这是欠固化被又快又好固化的一个例子。 如果你决定切除欠固化区,按照指导准则进行修复破洞,使用坡型板边,把支持物放在一侧或者把支持物放在可以逐步建立补丁的另一侧。如果表面光滑平整,不改变其形状,在你切除破洞之前,你可以在它上面放置一个支持物片或者一次铸型。当破洞被切除后,它的边缘会逐渐变小,把铸型放准位置,打好蜡,然后放置一个形状完全相同的补丁。一定要确保你放置铸型模具的表面要固化好且要用蜡和聚乙烯醇保护好,因为铸型模具刚被催化的树脂肯定要找到欠固化的表面并与它永久地结合。 富树脂和熟的层压板 这些有问题的层压板都会显得很坚实牢固,但是实际上是易碎的。其中每一种层压板会有一个日益破裂的区域来证实这一点,或者由看起来很小的损坏变成大范围的破坏来证明这一点。 识别富树脂 富树脂层压板在大多数方面都是正常的,但是,顾名思义,它含有比加固的玻璃纤维更多的树脂。在制造过程中,虽然水浸层压板和树脂的阶段可以形成大量的树脂,而不是轧制出过剩的树脂,但是层压板的富树脂区最有可能出现在低点,在那里树脂可以凝聚。燃烧层压板样品是一项确定特定层压板树脂和玻璃纤维比例的标准化测试。树脂将会完全被烧尽,玻璃纤维没有受到任何损坏,会完整无缺地留下,因此,你可以很清楚地确认和清数出层压板的层次。在燃烧层压板之前和燃烧层压板之后分别测试一下它的重量,这样你就可以计算出树脂和玻璃纤维之间的百分比。警告:一旦层压板燃烧,玻璃纤维树脂在燃烧过程中会很烫,燃烧的速度也很快,并散发出一种难闻的有毒气体,所以你最好选择在室外一个防火并且通风好的地方燃烧层压板。 50%的树脂和50%的玻璃纤维是最理想的状态,但事实上,70%的树脂和30%的玻璃纤维在商业贸易中是可以被接受的。造成这么大的偏差的原因是树脂越多就越会增加层压板的总厚度,因为同等数量的玻璃纤维加固物需要更多的材料,厚层压板总比薄层压板牢固很多。 修复富树脂区 遗憾的是,唯一可以修复富树脂区的办法是增加更多的层压板的层,而这种层压板的层要含有适当比例的玻璃纤维。如果是处于某种不切实际的原因,你将面临必须要切除富树脂区的情况,你需要切除掉这块区域,然后用新的层压板层来替换它。非纺织型的粗纱,比如说双轴粗纱(其中包含两个单向层缝合在一起),用很少量的这种粗纱却可以增加很大的强度。在两侧增加两层的强度比只增加一层的强度要大。但是,通常情况下,在外侧增加的层数要比在内侧增加的层数多。 下面几页中的图片描述的是在一家康涅狄格州造船厂修复玻璃纤维船艇的情况。 这些图片比语言有更强的说服力,它告诉我们实际上任何损坏都是可以修复的,修复后的牢固程度和美观程度完全可以和周围没有损坏的部分相媲美。在标题中提到的所有修复技术和修复步骤将会在这本书中详细地论述。(图片由James M. Curry, Killingworth, CT提供) 下面的七张图片:对一艘40英尺的巡航帆船上有心轻木甲板分层的修复,我们在第5章谈到过。在可以使核心饱和及腐烂的螺栓周围出现的渗透导致大范围的分层。这个区域的范围可以通过用锤子轻敲的方法来确定大小,然后在甲板上标出分层范围的轮廓。 1. 用带有硬质合金刀片的圆锯切除外层。 2. 外层移除后,会看到腐烂核心的斑点,这些黑色斑点是聚酯纤维填料,聚酯纤维填料用于填充螺旋孔以便新的核心和外层表面可以被真空袋塑模。(真空袋模塑可以有助于核心和玻璃纤维均匀地结合,也有助于使玻璃纤维和树脂之间的比率达到最适当状态,但是一点也没有必要在这本书里讨论真空袋模塑的问题。) 3. 为了很好地与内表面相结合,新的核心会被固定在树脂油灰里。 4. 孔已经为导丝钩和硬件螺旋压缩点钻好了,硬件螺旋压缩点可以防止在螺旋收紧的时候核心出现破碎。这些孔现在可以用树脂油灰或切碎的玻璃纤维钢绞丝混合物来填充。 5. 润湿新的核心,准备把它放置在外层表面。 6. 按规格裁切玻璃纤维,然后放置在适当的位置...... 7. ……接着润湿玻璃纤维。修复甲板的适当层压板时间表和技术在第5章中已经讨论过了。 上图:一艘带有破洞的单桅纵帆船,这艘比赛用船有48英尺长,碾碎它的整流化合物和的外层表面。Klegecell是一种聚氨酯泡沫塑料,Klegecell芯(粉红色区域)已经被移除。玻璃通常被倾斜为10比1,也就是说,5英尺宽0.5英尺厚,但是到12时,要在耐力边缘建造。 中图:在上图中使用整流化合物的环氧微珠进行船艇修复整流。在这本书的其他部分曾经提到过,聚酯整流油灰有这种作用。环氧油灰更耐用,更耐水,黏结更牢固。 下图:切碎泡沫芯海上赛船上的整流化合物。Klegecell芯已经被移除,会出现碳化纤维内表层,在芯和单向S型玻璃外表层放置在适当位置后,碳化纤维内表层将会被修复。在第1章我们讨论过,S型玻璃和碳化纤维非常昂贵,它们的使用主要限制在高性能的帆船和汽艇上。 在这页中:轻木有芯Tiara 36 汽艇船的修复。在船尾折角线的最上面是结实的玻璃纤维。1. 右舷:双轴粗纱标准放置在船尾折角线上面的坚实部分和外表层有芯区较小损坏的部分。把轻木芯切除下来用于替换破坏范围更广的区域的芯。2. 左舷尾部:在代替的芯安装之前,修复船尾折角线下面的内表层。一个新的牢固的玻璃部分放置在长板上为了填充折角线最上面的部分,现在已经把玻璃放在了合适的位置。3. 在围拢一个角落的内表层之前,要整流那个最上面的新部分。4.内表层修复完成,准备好芯和外表层的整流和安装。5. 右舷尾部:芯和外表层放置在合适的位置,然后进行整流。用带硬质合金刀片的手力刨去刨掉重叠部分的超重玻璃,用带硬质合金刀片的手力刨比用研磨器刨除粗糙的整流化合物更快速。但是对于小范围的修复的影响不是很明显。这个技术工人应该戴上护目镜和防毒尘面具。6. 最后一步重新涂抹后(在这个案例中涂抹的是Awlgrip),Tiara的修复就完成了,在第2章中我们提到过。 119 热用树脂 热用树脂是指树脂在固化过程中过热,使颜色变暗,容易损坏,倾向于破碎。奇怪的是,一旦树脂已经完全固化,它可以承受很高的温度:加热到800华氏度至900华氏度时树脂才会被点燃。树脂填塞在一个深的受限制的凹形空间,或者被投放在一个大容器里,或者如果既没有调整催化剂进行补偿也没有使用特定的低放热曲线铸件树脂的话,放置一个厚层压板,树脂可能产生更多低放热曲线热量,开始冒烟,变成热用树脂,因此只有一点强度甚至没有强度。不幸的是,对于这种情况,你没有好的办法,除非你切除它,替换它,或者把它压缩到一个非常牢固的层压板里。再次提到,燃烧测试可以非常无疑地确定这是热用树脂层压板还是富树脂层压板。这有助于你很好地判断。 回顾一下,富树脂或者热用树脂情况都可以被制造商创造出来,如果可能,制造厂是第一可以获取帮助的地方。如果你必须靠自己修复富树脂或者热用树脂中任何一种情况,修复的步骤几乎一样。唯一的区别是修复的程度或者所需要的加固材料的数量。 120 第8章 修复船艇龙骨和其他水下使用的零部件 空心玻璃纤维船艇龙骨的损坏 我最大的烦恼之一是传统设计的摩托艇和帆船上的空心型玻璃纤维船艇龙骨和它们一样空洞。多年来,我一直在对比薄表层,大多数制造商把薄表层用于摩托艇和帆船的龙骨,碎屑和龙骨后部,传统上,大多数的木船常用坚实的橡木和黄松木制造。好像造船人从没有听说过岩石或者珊瑚,他们认为所有的水体都有软泥底。他们安排船艇龙骨表层使其能够承受被吊索突然抬起,或者放置在岸上的木块上面,似乎船艇将会遭遇最坏的力量冲击。然而,如果你有一艘破裂的或者开孔的空心型玻璃纤维龙骨,你至少会对此更加了解。即使你的船艇的舵硬件或者轴胴材有过一次令人讨厌的漏水,而这些舵硬件或者轴胴材是用较薄的玻璃纤维系紧的,出现漏水后,你就会想为什么不能加强空心型龙骨的这些区域或者填充结实进而放置硬件周围漏水。他们肯定可能也应该已经加强并填充了这些区域。如果你从这一章什么都没有学到,但你受到鼓励去建立一个厚的层压板,当你正在修复的时候,或者用坚实的加固龙骨油灰填充这些薄弱区域,或者两者都去做,如果是这样的话,你读这一章也是值得的。 破裂和破碎 如果你已经检查了你的船艇龙骨的漏水的那个点,你发现在它的底部表面有一个裂缝,这很可能是你的船艇龙骨碰到了狭长物体或者非常坚硬的底部。如果裂缝是沿着船艇中心线从船头到船尾纵向的,然后她的两边至少被部分放置在铸模的两个部分上,接着在装配好铸模之后沿着中心线与层连接起来。除去底部的油漆之后你可以确定这些,据我所知,没有哪个建造者能完全碾碎并填充那片闪光或者线条,铸模的两个部分沿着龙骨的底部在那里结合。为什么令人烦恼的地方没有看到?然而,一个横跨整个船身的破裂并不一定意味着这艘船不会有一条特定的线使它结合。我曾经看到过至少有一艘裂缝90度的船最后被重新连接在一起,这件事告诉我要轻敲龙骨底部,沿着联线向上折叠裂缝点。 如果你没有那么幸运,你的船持续有破碎出现,与岩石底部不断有联系,这种情况下所需要的修复和单个相对较干净的裂缝的修复几乎一样。不管在哪种案例中,裂缝的存在通过层压板会一直扩展,这就需要一块补丁,同样,这块补丁在裂缝的点上也会一直随着裂缝的扩展而不断扩展。补丁应该从裂缝底部到表面应该成锥形,推荐要有围巾的宽度,大约是层压板厚度的十二倍。 121 在大多数案例中,最好的途径是从船的外侧修建补丁, 因为船的内侧空间上受限,而且也不好进入。事实上,你的身体会被船上的压缩的铅压载或者必要的水槽排除在破坏区内部之外。同时,也可能会有一个中心引擎,螺旋轴或者相关的齿轮,要想把它们从船上移除出来需要昂贵的费用。不用担心,几乎你为完好修复所做的一切都可以从船的外侧来完成。 然而,在内侧有两项操作你应该认真加以考虑:(1)如果舱底已经油饱和,或者如果损坏的地方位于整体油箱上,在你给龙骨修建补丁之前,你应该让它们先蒸发出来。(2)如果层压本比它应有的强度还弱(也许在你看来它太容易破裂了),那么这是不可行的,或者说从外观的使用角度考虑,不可以在外侧修建补丁,所以你应该在内侧加固它。 如果你决定必须从内侧增加层压板,整齐清洁法将很有必要或者将不会有任何黏结。在任何情况下,船的损坏都破坏了龙骨的水密封完整性,为清洗龙骨机油箱和舱底提供了很好的理由。这项工作最需要的工具就是Steam Jenny (一种蒸汽清洁器的名称), 或者从工具租赁店租借一个蒸汽清洁器,或者可能的话可以从汽车修理站租借一下。蒸汽清洁器是一种便携式机器,用它可以抽空蒸汽,蒸汽可以使油脂和油泥融化消散。对于相当粗糙的舱底,你可以添加洗涤剂。最后你用浸过丙酮的抹布擦干就可以了。注意:小心不要产生爆炸性混合气体和丙酮油烟!在封闭空间使用挥发溶剂时,一定要保持良好的通风。 龙骨上的孔 对空心龙骨上的孔的修复和裂缝和破碎的修复基本上一样。唯一的区别是它们需要支撑物,可以使船开始入坞修复,或者失去很大一块区域,孔需要一个结构或者铸型一样的构造,这样可以在上面放置新的部件。如果有大范围的损害,内部一些部分可能要被拆掉,这样可以使你更好地进入内部,比龙骨只有局部损坏的情况进入内部要容易很多。有两个行动过程:要么你在外部放一些支撑物,然后从船的内部修建新的层压板,要么你可以在空心龙骨内表面放置一些支撑物, 然后从船外部修建新的层压板,最后从舱底移除支撑物就行了。 在空心龙骨或者舱底区,层压板的精确厚度并不重要,但是油箱或者其他安装在没有缝隙墙壁的部件除外。因此,有一个很好的方式开始替换龙骨,那就是在空心龙骨内部安装一些玻璃纤维薄板。玻璃纤维薄板用放在打过蜡的桌子上的玻璃纤维方格布的一个单层造成。这种方法(图 8-1)在第六章中描述过。把玻璃纤维薄板切成条状,或者如果需要,可以切成其他形状,当玻璃纤维薄板未干的时候或者半固化的时候将它变弯。坚硬的弯曲物在未干的层压板上不能被弯曲,可以被放置在形成的蜡质物体上。木头作为玻璃纤维薄板的结构安装在龙骨里,当层压板被修建后再把它移除。用铜或黄铜钉子或者青铜订书钉将玻璃纤维薄板片固定在木头上,当层压板建好及木头撤离后就可以截断或者锯断它了。 应该提到的是,玻璃纤维薄板用作层压板的起始材料时,通常被折叠为条状或者片状。这是因为制作薄板的玻璃纤维方格布的单个厚度是那么薄以致于到时候有一些层会被建在折叠所产生的薄板突起部分上,薄板的突起部分几近消失。 122 大型半固化粗纱薄板(Large sheets of semicured roving 上过水蜡的木模板(Waxed wooden form) 带有青铜订书钉的生粗纱(“green” roving fastened with bronze staples) 临时木模板确定龙骨形状(Temporary wooden forms define the keel’s shape) 图8-1.大型均匀且严重破坏区最容易用生玻璃纤维薄板修复。 在金属硬件周围漏水 玻璃纤维不能粘住金属或者不能长时间地粘住金属。所以,硬件或者拴扣物周围的水密装置最终要么依赖于装置的紧密程度,要么依赖于在金属和玻璃纤维之间的垫置物。当层压板放置在金属周围时,层压板和金属紧缩在一起,或者用带有锥形针的物体在玻璃纤维上拧出一个孔,一种材料在另外一种材料(不包括水)上的压力会相当的好。这样的结合将会使它保持不漏水,除非某些外力,比如说不同级别的收缩和膨胀,腐蚀侵入,严寒湿气形成的楔形物,或者收缩振动,或者金属松动。了解了金属穿过玻璃纤维表面的水密封完整性后,你会对这不是特别信任,大多数的造船人使用次要的封蜡化合物,或者填充树脂胶,或者他们在金属硬件下面或它的拴扣物周围使用预制成的垫圈。 许多这样的密封剂可以起到足够长时间的作用,这足以使制造商免受责备,即使一段时间之后密封剂不再有效果了也没有事。正如你所了解的(烦恼的)那样,所有的密封剂迟早会失去效果。进一步更糟糕的说法是,最持久的密封剂往往是最昂贵,使用起来最消耗时间。因此,只有造船者愿意付出这么长时间来制造耐用的产品。 上图中对配件漏水做了很多说明,比如轴胴材,舵杆孔,舵栓,舵跟轴头,舵跟配件,龙骨后部和其他在龙骨里或则在龙骨周围的金属配件。然而,我的目的是更详细地列出原因,这样我们可以排除任何关于我们必须要接受船艇水下配件漏水或者偶尔渗透的概念。 当然,你可以在任何一片硬件下面替换垫置化合物。拿走它,把它清洗干净,放在玻璃纤维下面,把它重新安装在新垫置物上面。使用高质量的垫子,这种垫子要尽可能牢固且不受渗透影响。 轴胴材(Shaft log) 舵杆孔(Rudderport) 舵跟轴头(Gudgeon) 舵跟配件(Heel fitting) 吊式轴承(Shaft strut) 图 8-2. 船身的每一处渗透开孔都是漏水的潜在危险。 123 贯穿船身 实际上,你对贯穿船身型的配件所能做的事情是在修理时浇注轴承,这种配件是由一个外部凸缘和一个针状物体上的内部螺母做成的。这些配件用来夹紧凸缘和螺母下面的垫子单边的两侧,把孔联系在一起(图 8-3)。 通常来说,这些可以用很多年都不会出现问题,除非在安装这些配件的时候出现了问题或者这些配件被腐蚀损耗。 偶尔拧一下水下作业的模塑塑料贯穿船身是一个不错的想法。就像你已经注意到的,造船者特别喜欢用这些不是很昂贵的配件来替换金属,但是至今,塑料贯穿船身的使用在吃水线以上还是受限的。原因很简单:他们非常那个容易损害。通常会这样的情况,一个沉重的物体像备用锚可能会抛到船身上,突然就会出现一个很糟糕的漏洞。在空心龙骨的层压板中通常没有芯,但是就想我们在这一章所提到的关于芯的问题,通过夹心结构安装的任何贯穿船身上的有孔区都应该用坚实的玻璃纤维修复。芯的边缘不会被孔露出来。切去内表层和芯的补丁,接着用玻璃纤维层修建外表层的内表面。如果某些层会翻起并折叠夹心结构的内表面,这样做就可以使外表层变得更厚,同时也把芯封起来了(图 8-4)。 密封剂(Sealant) 贯穿船身配件(Through-hull fitting) 牢固的单层玻璃纤维层压板(Solid, single-skin fiberglass laminate) 图 8-3. 在船身和配件之间正确使用密封剂可以消除贯穿船身漏水。硅酮密封剂在水下使用时效果非常好。聚硫胶合密封剂也是一种很好的选择。聚亚安酯,比如3M 5200, 能永久性的粘合。从最保险的角度考虑,螺母下面的部分也应该粘合牢固。 如果你怀疑贯穿船身安装的单表层太薄太容易弯曲以致于可以是贯穿船身的配件进入,当然可以另外增加一张层压板或者从有点厚薄板上切去一些玻璃纤维,把它固定在树脂和湿垫子上进行安装,使配件的周围区域变硬,尤其是在舱底或者空心龙骨的阴湿处。它没有玻璃纤维持续得时间长,一两年内没有人会想起拨弄它使它变得柔软些。使用木料只是在将来某一天自找麻烦。 用玻璃纤维贯穿船身替换 另外有一种处理贯穿船身的方法,特别是针对那些直接和软管连接的贯穿船身,且没有通海阀或者活门在上面。你可以用玻璃纤维管型材料的贯穿船身来替换它们。玻璃纤维贯穿船身被广泛应用于船艇驾驶室排水孔,甲板排水管,排气管线,船底排水泵,偶尔也用于水槽或者卫生间出口。玻璃纤维贯穿船身是最好的,通海阀不需要关掉水流入设备,在吃水线以上可以把它当作上下连在一起的软管运载,在吃水线以下没有任何相连。 运往内表面的层压板(Laminate carried onto inner skin) 密封剂(Sealant) 切除配件上的芯并用牢固的层压板来代替(Cut away core in way of fitting and replace with solid laminate) 图 8-4. 通过有芯船身安装贯穿船身时需要多加小心以防止芯的饱和。 124 焊接在船身上玻璃纤维软管被运载在吃水线以上的位置,玻璃纤维软管会出现什么样的情况呢?然而,我们像说出船艇耐用的时间那样肯定地说出玻璃纤维软管所耐用的时间。我曾经调查过许多使用年限将近30年的船艇,这些船艇都是用玻璃纤维贯穿船身,它们和刚开始建造时一样耐用。我曾经震惊地发现在一艘使用了25年之久的单桅纵帆船,它的贯穿船身驾驶室排水孔软管上有个孔,这个孔就在吃水线上面,我都可以把我的手指放进孔里,可能软管和船艇使用的时间一样长,谁也不知道到底有多少原因使它漏水。不幸的是,因为玻璃纤维贯穿船身软管延长到吃水线以上,当停泊的时候,没有把它轻轻地放在底部。 是的,从长远来看,整体玻璃纤维贯穿船身可能是最耐用的,也是最省事的,尤其是在它们被在吃水线以上运载的时候。毫无疑问,在它们排除海水旋塞或者阀门的时候既节省了安装费用也节省了维修费用。海水旋塞通常会被船艇主人遗忘,有时候,海水旋塞会和受腐蚀的部位冻结在一起,如果你想在紧急情况下使用它,打开它需要一会时间。适用于各种尺寸的贯穿船身的玻璃纤维软管都可以买到现成的,或者你也可以自己动手制造软管(看下面部分)。 同时,如果你想得到一定的价值,你最好把海水旋塞很到位地安装在针状青铜贯穿船身上。因为没有更可靠的方法把海水旋塞金属物连接在玻璃纤维贯穿船身上。尽管我对玻璃纤维贯穿船身的简洁性很欣赏,但也不能过低评估青铜贯穿船身凸缘和固定在船身的螺母的耐久性。在过去,会定期规则地使用青铜水下使用配件,如果很好地保养它们,避免被电解或者锈侵蚀,它们有时候会持续很久,把它们从不能再用的木制船身上取出还可以用在新船的建造上。 轴胴材和舵杆孔 轴胴材和舵杆孔是贯穿船身硬件的两个部分。它们更可靠,因为它们包含玻璃纤维软管。如果你有带螺栓的青铜尾轴/填料函,青铜尾轴/填料函由于经过敲击后变得疏松进而脱离了原来的位置,或者如果在你的船身层压板的内部,合成橡胶被毁坏,青铜填料函/尾轴被从原来位置上撕掉,你就会知道弄乱它们的安装是多么的容易。 不幸的是,这些青铜铸件的使用只不过是从木制造船方法向玻璃纤维造船方法的转移。几乎没有什么事件可以导致玻璃纤维机动船洪水泛滥,倒是有很多因素使青铜填料函/尾轴疏松脱离原来的位置。使问题更糟的是,购买和安装它们的费用比玻璃纤维轴胴材或者舵杆孔还要昂贵。玻璃纤维舵杆孔或者轴胴材只需要舷尾青铜套筒上的橡胶轴承和粘附船舷轴尾的填料函的橡胶领圈(一小段长的橡胶管)。可以让这种船桅装置和层压板相结合,用玻璃纤维加固物围住它,直到完全相同的周围的船身的损坏可以打开它。 贯穿空心龙骨的玻璃纤维轴胴材非常容易被龙骨的坚实部分掩盖,可以与很久之前的坚实橡木龙骨材料相媲美。立即在填料函橡胶领圈尾部建立水坝并灌入加固树脂。在有限空间的情况下或者在低容量的情况下,均匀的多种用途的聚酯树脂和劈成的或者磨成的玻璃纤维可以使用。在大容量区域(宽或者深的空心龙骨),当大部分在固化时,聚酯铸件树脂将会排除过热的危险。除了磨成的玻璃纤维之外,还有许多其他的加固材料,可以减少成本和减轻化合物的重量。如果你不想的话,其实你并不需要亲自混合化合物,你可以联系供应商让造船者给你送来一些适合填充空心龙骨的加固树脂化合物。 125 一旦轴胴材被掩埋在龙骨油灰里,我喜欢用带交互双轴粗纱和垫子的层压板遮盖它,双轴粗纱和垫子在船身的每一边都很好地延伸到船身层压板上。 将玻璃纤维软管舵杆孔和层压板加固集结点牢固地合并在一起不是很难的事,在层压板加固集结点可以进入龙骨。软管的上面部分可以用膝盖或者其他用玻璃围住的支撑物拉牢。另外,舵杆应该有个很牢固的上轴承,手轴承安装得越高越合理,如果舵严重损害的话,这样可以防止用杠杆撬开船身。像玻璃纤维轴胴材一样,玻璃纤维舵杆孔会更好一些,也更便宜一些,并它有无限的生命周期。当然,橡胶领圈填料函或者在舵周围的其他密封帽应该安装在玻璃纤维舵杆孔的顶上,除非软管延长高于吃水线,这样就不需要把它放在玻璃纤维舵杆孔顶上了。 在需要掌舵的帆船上,舵杆孔往往放置在驾驶室或者在尾部甲板上,玻璃纤维软管是天然的,因为因为它很容易被玻璃纤维化到船身上和驾驶室或者甲板上。 因此,有两种方法修复金属舵杆孔软管,金属舵杆孔软管已经被疏松或者由于被敲击而脱离原来的位置,放软管的地方一般会机械地拴牢在船身上:首先,只要金属舵还依然能用(也许它只是松弛了,漏水了,但它还仍然系在船身上),你可以将它玻璃纤维化。然而,这次要一直用玻璃纤维包住金属舵直到把它放在甲板下面,也将它玻璃纤维化好后放在层压板下面(图 8-5)。实际上,这就给了你一个带金属的玻璃纤维舵杆孔,它不会在船身和甲板之间的任何地方漏水。如果你用这种方法,你应该确定金属舵尾部被密封好,舵尾部按照规划在底部要穿过船身和在顶部要穿过甲板。清除干净金属和层压板之间的裂缝,放一些垫子进去,或者在外表面上裂缝周围放一些螺母,大块木料或者金属领圈。 这需要防止水渗透层压板,尤其在寒冷的气候条件下,结冰可以使极小的水池变大。 A. A. 问题 (THE PROBLEM) 底包板(Cockpit sole) 金属舵软管(Metal rudder tube) 不均匀局部膨胀振动,或者震动导致玻璃纤维从舵软管分离进而漏水。(Differential expansion vibration, or shock has caused fiberglass to separate from the rudder tube, causing leaks) 舵轴(Rudder shaft) B. 修复(THE CURE) 密封剂(Sealant) 用玻璃纤维从上到下包住软管然后放到底包板和船身上,金属软管完全覆盖在玻璃纤维里(Wrap glass around the tube from top to bottom and out onto the cockpit sole and hull, completely encasing metal tube in glass) 图8-5. 金属舵轴软管是令人气氛的漏水源头。 用玻璃纤维全部覆盖它可以消除这种危险。 但是,如果金属舵损坏,你可以用玻璃纤维舵杆孔替换整个装置,使它与船身和甲板层压板的每一个结合点都很牢固。(图 8-6)。 应该在软管的底部安装一个轴承,从船身的外表面向上延伸。这可以是有橡胶纹的青铜插件,这种类型的插件用在螺旋轴(一种弯刀轴承), 由于它在吃水线或者在吃水线下面,所以它要有水性润滑油,这些橡胶轴承必须要有润滑油。这种轴承可能也是一种插件,这种插件由类似尼龙的塑料制成,或者它可以是简单的青铜轴承,这种轴承由非常贴身的红黄铜管制成。 制造玻璃纤维软管配件 因为现在人造玻璃纤维软管很容易买到,它不值得自己动手去制造。但是,在你比供应商更急需它时,或者当你面临一种棘手的情况,你更需要一个尺寸或者形状奇怪的软管,而不是任何现成的软管,这个时候你完全可以自己制造它。 126 底包板(Cockpit sole) 玻璃纤维软管(Fiberglass tube) 吃水线(Waterline) 加固层压板(Reinforcing laminate) 尼龙或者橡胶轴承(Nylon or rubber bearing) 图 8-6. 如果金属舵杆孔受到破坏,用玻璃纤维软管替换它。 为了制造你自己的玻璃纤维软管,第一步是找一个模板或者心轴。几乎任何圆柱形物体都可以,只要它的外径和你想制造的软管的内径吻合。这可以是任何东西,从硬纸板软管到金属管或者制轴材料都行。只要材料不受树脂影响,而且当你把玻璃纤维放在它周围的时候容易旋转。 理想的心轴可能是车床上的木料。如果软管放置在轴胴材或者舵杆孔上,当轴承被按压的时候,心轴的直径将会和外舷尾部的直径一样长(图 8-7)。不考虑软管的作用,心轴的内舷尾部变为适当的直径以致于软管放置在一个特定的表层上,厚度将会有合适的外径接受软管,软管被夹紧在特定表层上。最后,用车床床身和其他部件防止滴下树脂,你甚至可以把软管和车床上的心轴放置在一起。车床将会转得很慢,可能一分钟转10到20圈,当软管放置好,树脂固化好,就可以转动了。 玻璃纤维轴管(Fiberglass stern tube) 关闭心轴后安装软管(Turn down the mandrel to fit the hose) 轴承(And the bearing) 或者用包装的材料建造(Or build up by wrapping) 图 8-7. 玻璃纤维轴管可以放置在车床上的木制心轴上面用来改正尺寸大小。 127 车床非常精致,但并非所有时候都必要。我制造过很多种软管并没有用这么奢侈的材料,而是用帆板桅杆上的新补丁和新跟片背接角材。如果在工作区域每一个末端的另一边只有一个V型的锯齿状木料,可以用手旋转心轴,那么制造某些轴承确实是很重要。纱锭(机器的轴),比如说心轴每个末端的钉子,也可以被用于旋转一对木板使其运作。只要你能从一个圆柱形物体中制成心轴,装配好可以使它运转,你就成功了。 在将玻璃纤维软管锻压成薄片时有两个易犯的错误需要加以注意。第一,不要让软管粘住心轴。给心轴打很多蜡。同时,不要让软管缠绕坚硬不易弯曲的木板周围时收缩太紧,否则你不得不破坏掉软管使它脱离木板。为了避免这种情况发生,可以使用像硬纸板这样易损坏的材料制造心轴。另外一个选择是把心轴切成纵长片,然后用它的中心部分做成可移动的楔形物。如果用金属制造心轴,你应该放置一个层压板,在层压板还没干的时候用锋利的刀子切一块纵长形切片,然后撬开它,在较为疏松的配件心轴上完成锻压。 如果你制造玻璃纤维轴胴材或者舵杆孔,你可以用舷尾的弯刀轴承制造心轴。然后,给轴承打蜡,便于将来有一天需要替换物的时候按压,让层压板软管在它附近收缩得紧一点。为了预防它松掉,你应该放置一个线状螺母或者小片的青铜,这样可以使软管舷尾轴承每边的固定螺丝钻孔和穿线。 你可以用任何玻璃纤维织物卷绕软管,但是最简单的方法是用一条软管长度那么宽的玻璃纤维布料,布料的长度至少是几个软管的圆周长。旋转心轴就可以把它缠绕住,织物很容易被打湿,你可以拉紧软管挤出多余的树脂,没有必要害怕拉紧软管部分。布料优于玻璃纤维方格布的原因是它足够柔软,很容易确定形状。因此它可以帮助防止层压板的缝隙。为了最安全安排考虑,我喜欢在层压板的首端和末端放一两层垫子。布料很容易脱落。如果在它上面没有一层垫子,有可能松掉的布料丝丝缕缕会卷紧在轴胴材内侧的轴。在任何贯穿船身软管的外侧,垫子将会提高玻璃纤维的黏合性,玻璃纤维用于把它黏合到船身。垫子至今为止是所以玻璃纤维织物中最防水的,没有比用在水下贯穿船身配件上更重要的了。 密封贯穿螺栓硬件 当你选择用玻璃纤维配件替换一些金属贯穿船身配件时,其他的像有螺栓的金属部件没有替换物。它们是在拖拉上岸的船艇的任何连接出最可能出现漏水的配件。这些贯穿螺栓配件包括帆船舵跟配件和中部舵栓或者枢轴。不管这些配件拴在或钉在船身上有多牢固,如果螺栓或者铆钉在空心玻璃纤维龙骨里作用终止,这些配件早晚会松掉然后开始漏水。更糟糕的是,有一种配件在敲击时就会松掉,有可能有一些空心龙骨使用这种配件。根据你从经历中得到的经验,失去牢固性的垫子出现的小漏水通常不会引起马上重视,但是几乎没有船艇可以从一片空心龙骨漏水引发的洪水中幸存下来。过去几年,找出很多船艇漏水的原因所在,是由于空心龙骨的硬件损坏导致。如果螺栓拴牢的硬件与舱底的其他部分封锁起来,这样就会避免船艇出现洪水。 不管你是在简单修复配件漏水,安装一个损害部件的替换物,还是重建一个已经丢失了一两个配件的龙骨,我建议你用龙骨油灰填充那个区域,把玻璃纤维放在龙骨内侧螺栓和垫子上,或者最好这两样事情你都做。 128 安装鳍状龙骨和各自的导流尾鳍 可能相对于用空心龙骨放置深船身的困难,把独木舟船身放进玻璃纤维和拧紧鳍状龙骨上的螺栓很容易。可能要结合容易适应的玻璃纤维建造技术对短龙骨设计外观进行改进。即使在造船厂可以移动的吊索升降机和吊车的改变可以处理这种情况(鳍状龙骨往往是令人讨厌的在铁道拖拉的东西)。不管是什么因素,现在的造船厂和码头有数百万有各自不同舵带有鳍状龙骨浅船身的帆船。从传统的长龙骨到鳍状的短龙骨的改变出现了新的问题,也带来了各种不同的损害。 鳍状龙骨的船艇与岩石或者坚硬的底部碰撞的力量传递给船身的小部分区域,很可能损害附加装置区域的船身。同样碰撞的力量几乎通常会消散在稍微长的传统龙骨的附加装置区域。不管是哪种龙骨,与坚硬底部的碰撞都能在碰撞点造成损害。但是,即使你的船艇带有鳍状龙骨,你也应该更接近地寻找龙骨附加装置区域对船身造成的损害。 查找损害 当鱼鳍状龙骨与底部相撞,不管船艇是在行驶过程中还是在风暴中被迫上岸,当从下面撞击船身时龙骨就像铁锤一样猛击船身,或者从上面,尾部或者任何一边撞击船身,龙骨试图击破船身的一部分。艰难的着陆之后,查看龙骨顶部周围层压板的表面以及邻近龙骨表面的裂缝,这些裂缝通常显示会有更严重破碎的可能。 击打龙骨的侧面,不管是从龙骨击打底部还是从船身重击龙骨,这样可以导致船身和龙骨结合的地方沿着曲线或者角度出现裂缝。幸运的是,这些裂缝很少见,因为造船者倾向于沿着龙骨的任何一侧加强层压板,扬着帆吸收倾斜的张力。很多造船者也在木制船艇里安装类似于地板横梁的横向木料,在加强那个方向的力量。不要让凝胶漆上的裂缝使你愚蠢地认为在层压板上有很多破碎的地方。沿着龙骨和船身结合处的凝胶漆上极细的织物裂缝往往是由于凝胶漆比层压板更容易损坏的事实。当船艇扬着帆倾斜驶过船身稍微弯曲就会出现裂缝。凝胶漆上的应力裂纹通常是轻微的,浅浅的,几乎与龙骨顶部平行。另一方面,破碎的地方往往是粗糙的,深的,而且会突起一些玻璃纤维细丝。很自然地,如果裂缝漏水,那肯定是破碎了。 船身内侧裂缝区域的层压板可能会出现破裂的玻璃纤维,或者如果它是未上漆的玻璃纤维或未加工过的玻璃纤维,在黑暗的层压板上可以看见一条白色的线条。当层压板背后照明的时候,破碎的地方可能以黑色线条的形式出现,凝胶漆非常薄,光线可以从外面穿透那个区域。区分凝胶漆裂缝和破碎的另一种方法是通过声音。当用一个硬物敲击的时候,断裂的玻璃纤维比坚实的玻璃纤维有各种不同的声音,甚至当坚实的层压板有凝胶漆裂缝时也是这样。实际上,凝胶漆应该被压成片,它听起来有点嘎吱嘎吱的声音,但是,不同的声音来自于显而易见的反应物或者破碎的层压板的裂缝声。 不幸的是,如果没有探查术,就不可能看到很多龙骨附加装置区船身内部情况。造船者好像在驾驶舱底包板提供了很少的舱口,最近他们打算使这些舱口变得更小。因此,我亲身经历过很多对船身破碎的修复,切除,打开内部然后再次合拢所需要的费用比修复的费用要大很多。你应该怀疑在船身和龙骨结合区域的破碎,不要草率切开底包板。首先,要仔细检查外部。 129 根据我的个人经验,最常见的由鳍状龙骨造成的船身损害是在龙骨前面或者尾部层压板的横向破裂,有时候在两个区域都有损害(图 8-8)。在船艇向前移动时,而且鳍的较低部份被碰撞而突然停止,这时候就会造成这种类型的损害。鳍试图转动,拉伸下面龙骨前端尾部的层压板,把层压板折叠进后端的船身里面。因此,龙骨附加装置尾部的集中压力很强大,即使加厚的层压板穿过的时候也通常会破裂然后开始漏水。显而易见的原因是,玻璃纤维在拉伸状态时比在压缩状态时要牢固得多。龙骨前部的层压板相对后部的层压板而言更不可能破裂,也就是说在龙骨前部层压板被拉伸的地方比龙骨后部被推压的地方或者向上扣紧的地方破裂的可能性更小。然而,我曾经看到很多船艇前后两端都出现破裂。 进行修复 对龙骨周围船身上出现的破裂最好的修复方法是磨碎它们,在内部刻上V型痕,用垫子和有捻粗纱轮换层重新建造。大部分粗纱丝(从来没有小于一半)应该穿过破裂。在内部制造补丁有很多原因。首先,在船身内部进行修复有助于避免再次均匀混合外表面的大部分区域。从内部使用补丁允许添加额外的层,延伸达到周围的层压板。因此,可以在龙骨附加装置区域制造更牢固的层压板,而不是在之前存在的地方制造,再次强调一下,没有必要在外表面添加太多的加固物。 尽管在内部修复的好理由有很多,但是在猛击内部装置进行修复简单的破裂或者完全破裂之前,你应该仔细研究一下船艇。拉起粘住的小块地毯和切除一片底包板是很为难的事情(这些特征是多么卑劣), 只有去寻找在被油箱,桅座或者玻璃纤维台子支撑物堵塞造成的损害上补丁。如果内部的太多破坏和刷新将需要修复,必须要便宜,要快,而且要减少麻烦,在船身外部进行修复。 在内部修复时,当然你可以简单地颠倒一下在内部修建补丁的步骤。碾磨出宽V型印痕,只沿着实际上的裂缝线穿透到内部。然后,用不断加宽的交互垫子和双轴粗纱填充V型裂缝印痕。当V型里面的补丁建造得稍微高出表面时,你必须决定是否抹平补丁,完成清洗或者继续添加额外的层。如果你决定使用额外的加固物,每一层应该延伸一定距离超过补丁, 这样它们就可以逐渐变为底部的形状,不会变成不好看的隆起物。 尾部破裂(aft break) 前部破裂(forward break) 鳍状龙骨 (fin keel) 压缩导致船身向里弯曲 (compression causes hull to buckle inward) 张力导致表层毁坏及突然断裂打开(tension causes skin to pull down and snap open ) 岩石或者珊瑚 (rocks or coral) 图 8-8. 鳍状龙骨的坚实基础保证了彻底检查。 是否你继续用额外的层超过损害区依赖于你对放在V型裂缝里的补丁是否牢固。如果V型的的宽度是层压板厚度的12倍,最好再宽点,你建造的补丁应该和原始层压板一样牢固。放置你的补丁越厚越宽将使那个区域比破坏时候更牢固,将使破裂区的任何破碎或者拉伸更坚强,也将会它们更防水。像这样的补丁很保险,只是需要很重要额外用于均匀混合和修整的费用。幸运的是,这种修整工作不是在吃水线下面瞎忙也不消耗时间,在吃水线下会用底部油漆覆盖它,就像在吃水线以上的部分一样光滑。 130 内部加固附属物损害 为了加固拴有螺栓的鳍状龙骨船身,造船人经常增加船身鳍状龙骨上的层压板厚度使其支住龙骨的重量,在没有安装特别加固附属物的情况下。在其它船艇中,他们用类似于木制船艇底部木料的玻璃纤维地板补充船身层压板的坚硬程度。它们可能是单层地板,如果需要,可以将它玻璃纤维化,或者许多地板可以在一个类似于巨大烘饼的大型模具里与从船头到船尾的纵梁相结合。模具单独放置,不久使用湿垫子或龙骨油灰将它安装在船身上。这种设计包括龙骨螺栓螺母和垫圈的凹处,舱底包板通常拴紧在它整体附加装置的水平高度(见图1-17)。 透明地板和玻璃纤维地板方格应该检查是否有损害,如果你的龙骨遭遇了碰撞或者一次很严重的重击。在碰撞中,在龙骨后面末端上面的附属物更有可能受到损害,接着前面末端的附属物也会受到损害。这种类似船身层压板损害位置的出现顺序非常重要去注意,如果你正在遭遇可能的损害在密封舱底下面,你必须要决定在哪里切开进行检查。受到损害加固物的其他迹象是在舱底的裂缝或者隆起物,从舱底包板边缘周围的船身分离成层。在外部,除了层压板上的裂缝,在龙骨周围区域或者离它不远的区域寻找船身的变形。一个独木舟船体的船艇相对而言底部比较平,龙骨没有太倾斜或者反转,当它的重量用来承受龙骨顶部的时候,很明显地在鳍周围下垂。放松立脚点或者在船停泊上岸的时候用适当的支撑物支撑船身,通过这些方法可以进行测试。鳍形区船身坚硬程度的同样测试可以很快在Travelift (船用起重设备公司)进行,放松绳索的张力,当船身的重量向下作用在着陆的鳍的顶部时,寻找底部的迹象是变平还是凹陷。船身层压板重大的弯曲表明加固附属物的损害或者从船身表面的附属物裂为薄层。 修复加固附属物 受到损害的加固附属物必须放回浅V型,把裂缝拼接在一起,像所有打过补丁的单表面层压板一样。当船身分离成层时,固定物应该再次涂抹玻璃纤维或者再次喷胶,视情况的需要而定。如果龙骨螺栓出现了损害,至少应必须移除螺母和垫圈。在其他案例中,当裂缝需要修复的时候,整个龙骨必须移除(见下图)。如果龙骨螺栓没有裂缝,你取掉螺母和垫圈,确定给螺栓打蜡,用纸包住它们避免它们的线与树脂和玻璃纤维粘在一起。 添加更多的层的想法比用原始层压板表面填充一般的浅V型的想法要好很多。然而,对那些舱底包板直接搁在加固附属物最上面的船艇而言,增加厚度有可能对舱底的高度造成难以接受的损坏。最简单的解决方法是切除附属物的顶部,一定高度的裂缝允许添加额外的厚度。切除一个点表面或者裂缝的一面,在裂缝下面向下弯曲,在相反的一面,向上弯曲同样的距离到表面(图8-9)。如果打开一个空心附属物,用热胶安装支撑泡沫或者厚纸板,大约与切除部分的上部持平。现在放置新的泡沫或者厚纸板,在将它变小之前,将它放在附属物的边上。最后,建造修复部分的高度,直到它的高度与原来顶部表面持平。 131 舱底包板搁在加固附属物上 (cabin sole rests on reinforcement members) 切除大约一米在损坏区的每一侧以及它的下面(cut away about a foot each side of and below the damaged area) 用泡沫或者厚纸板支撑空心 (back up hollows with foam or cardboard) 重叠层压板现在可以建造到原来的高度 (overlapping laminate can now be built up to the original height) 图 8-9. 修复加固附属物可以直接支撑舱底。 铅压载的鳍状龙骨 弯曲的或者凹损的鳍 虽然鳍状龙骨有很多不同的制作方式,但是在这里开始我要陈述的是我从来没有看到过一艘弯曲的生铁龙骨。更进一步,我认为大多数的玻璃纤维船身会在大多数我见过的生铁龙骨弯曲之前就已经损坏了。这是生铁龙骨的优点之一。在任何情况下,如果你面临这样的问题,你应该咨询那些在做生铁工作的人。或者你可以去买一艘新船,假如船上没有留下任何有价值的东西。 铅和玻璃纤维是另外不同的物质。如果铅很薄而且较纯,那么它可以前后弯曲很多次,如果铅不是很薄也不是很纯的话,前后弯曲的次数就会少一些。我承认在我的店里只要我们投掷一个又大又深的铅鳍,当它直立着落向地面时只能使它滑出控制。当然,它必须横向落下木料,在它高度的中间使它很好地弯曲进去。如果没有把它弄直,不要再次投掷它,我曾经告诉过出错的雇员把它向上升高,让它落在它的另一边,放有木料在那个位置,尽可能精确地落入同一个位置。你相信龙骨在第一次落下后几乎是直的吗?从较低的高度降落几次,伴随着木料的压力,用雪橇大锤重击木料,我成功地使它变为投掷之前原来的形状。 加上一点精巧设计,一些租来的工具包括液压千斤顶,木料,或者 I型横梁,一些由螺丝夹线棒制成的螺栓,我认为你会惊讶自己居然可以弄直铅龙骨。 同时我也认为你也能成功弄直弯曲的且表面覆盖玻璃纤维的铅龙骨。如果玻璃纤维已经破裂或者部分需要移除,我建议首先将玻璃纤维移除,这样可以很容易地弄直铅,同时,这样也很容易查看清楚它是不是弄直了。 铅鳍仅仅用玻璃纤维覆盖。一些定制的龙骨分段制作得较薄较直,用泡沫和油灰建造符合水力需要的形状。其他大批量生产的龙骨由用油灰和泡沫填料投掷进玻璃纤维外层的铅压载物组成。 如果整流罩已经被嚼碎,铅露出来了,你已经知道我正在说的事情了。在你能使铅变直之前,你可能已经决定外壳必须从它的头到弯曲部分上部的头都剥掉,就像在受伤的膝盖上卷起裤腿一样。一旦你把铅弄直,你就可以在它周围重新放置玻璃纤维和其他材料。 132 当研究受到损害的鳍的问题的时候,直接从前面或者后面俯视龙骨和船,确定鳍是从船身中直直地伸出来。因为龙骨螺旋不是弯曲的,鳍从船身上没有松掉。只要龙骨与船身的结合处没有被摇晃松散或者损坏,假定有空间装配绳索,我试图很好地弄直鳍。如果一个牢固的鳍严重地凹损,它的铅局部移动,你也将发现由于它的巨大重量,你可以用锤子重击损坏的局部区使其变平,当鳍在它自己的位置,没有弯曲到它的其他地方。 宽松的或者倾斜的鳍 如果鳍是宽松的或者是倾斜的,那么必须把它拿开,这样可以检查玻璃纤维铅部的螺栓是否松散。螺栓如果弯曲,必须把它弄直,铅必须以合适的垂直方向安装在船身上。 假如当船身很平的时候,龙骨的底部被摆掉在港口或者右舷,这意味着怎样的损坏或者潜在的麻烦?有一点是肯定的:你的船艇在那个方向将有一份永久性名单,如果它不被修复的话。就像上面显示的那样,只有移除龙骨,你才能探知损坏的本质和程度。损坏的情况包括弯曲的龙骨螺栓,在铅和玻璃纤维之间的模糊结合点,在相反的一侧有一个轻微打开的结合处,在螺母和垫子下面的玻璃纤维的破裂,或者船身或者龙骨断株的玻璃纤维完全破裂。 移除鳍状龙骨 移除压载龙骨不是你想要做的事情,除非你不得不去做,但是有时候有必要移除鳍状龙骨,这样可以取出螺栓,或者可能在鳍状龙骨或龙骨螺栓里弄直弯曲的部分。确定螺栓孔仍然保持在原来相同的位置,保持同样的尺寸大小穿过原来的层压板,稍微扩大建在它们周围的新层。否则,如果没有扩大一些孔,树脂的减少或者新部分的小变动可能阻碍螺栓的再次进入。保证龙骨无故障重新安装最容易的方法是用打过蜡的销钉紧紧地插入孔里。销钉应该延长到船里,比新层压板的厚度要高一点,轻敲任何一边或者用纸包裹直到比上面原来的层压板的直径稍微大一点。当鳍重新安装好,它的上表面和胫或者螺栓上没有螺纹的部分将留在层压板上,用化合物覆盖好。可以使用填充树脂的龙骨油灰,只要螺栓和一个垫子表面,不是鳍的顶部就是船艇的底部,打上蜡有助于将来移除它。当替换螺母和垫圈后,用垫子化合物,龙骨油灰或者在它们下面的垫圈或者两个潮湿垫子,你可以把它们压缩进玻璃纤维,封闭任何水,这样可以发现上面有个螺栓孔。如果你决定这么做,在你建造螺母和覆盖它们之前,你应该等待知道所有新的玻璃纤维包括龙骨油灰坚硬固化,因为这将是你最后一次使它们坚固的机会除非你想砍掉覆盖物。再次强调,不要忘了打蜡,只在螺母,垫圈和螺栓上打蜡,而不是在周围玻璃纤维上打蜡。 弄直弯曲的龙骨螺栓 为了弄直已经变弯曲的螺栓,你可以用液压千斤顶施加压力。将一块钢管或者一块末端有孔的轴移在螺栓的上面,当作杠杆用强大的弯曲力(图8-10)。为了保护螺栓的螺纹,允许使用更加牢固的大直径管子,管子安装在弯曲部分的螺栓上面两个或更多的螺母上面。有时候,当用铅制作的螺栓的末端非常短的时候,所需要的是在一对螺母上面安装坚实的扳钳,在扳钳上面的管子起到杠杆的作用。 133 超大管子的长度 (long length of oversize pipe) 在弯曲部分上面保护螺纹的螺母 (nuts above bend protect threads) 铅龙骨 (lead keel) 技术熟练的人可以用长柄大锤弄直弯曲的短螺栓 (a skilled person can use a sledgehammer to straighten short bolts) 保护螺纹的两个螺母 (two nuts protect threads) 铅龙骨 (lead keel) 图 8-10. 用强力弄直弯曲的龙骨螺栓(明智地使用)。 (Straighten keelbolts with brute force (judiciously applied)). 我不想提到这点以免一些读者破坏了这项工作,但是有一种更受喜爱的弄直螺栓的简单方法是使用长柄大锤。然而,如果螺栓上没有缠绕保护螺纹的螺母的话,不要使用长柄大锤。同时,为了防止柔软铅上的孔变得更大,在用锤子弄直螺栓的时候,需要用夹具夹住螺栓。夹具可以由上面有孔的钢制成,这样在它放下螺栓的时候,它的金属板可以防止鳍的上部远离夹子,螺栓或者角钢的焊缝。角钢应该放置在鳍一侧的相反方向,制作一个平的,宽的围墙用于束缚螺栓,防止它弯向相反的一侧(图 8-11)。 应该把孔放大,这样可以填充环氧油灰,比如Marine-Tex。 修复船身或者断株龙骨 贯穿带螺栓龙骨的玻璃纤维受到损害,根据你之前关于玻璃纤维修复的讨论,你可能已经有了一个好的想法。总之,修复的步骤是,磨碎破裂部分,然后用新层压板上长且尖端细的接头重建它们。你在层压板上将不会发现任何芯,在层压板上的龙骨拴紧了螺栓,只是厚而且牢固的表层。你不仅要确定你的新层压板要放置得和交互垫子及双轴粗纱一样厚,如果那里有一定空间,你还要使用龙骨螺栓上的一些更宽更厚的垫圈扩大玻璃纤维上螺栓的张力。 钢板夹住坚硬螺栓底座 (steel plate holds base of bolt rigid) 管子 (pipe) 铅龙骨 (lead keel) 焊接角 (welded angle) 图 8-11. 钢制夹具在适当的位置夹住龙骨螺栓,避免螺栓孔变大。 134 螺栓铁制鳍状龙骨 铁制鳍有三种基本的类型:用暴露的螺栓凸缘拴螺栓,用遮盖的螺栓凸缘拴螺栓,以及用整个由延伸到船身的玻璃纤维和整流油灰覆盖的鳍来拴螺栓(图 8-12)。 螺栓凸缘龙骨 (Bolted-on flange keel) 遮盖的螺栓凸缘龙骨 (Bolted-on, covered flange keel) 由玻璃纤维遮盖的螺栓鳍 (Bolted-on fin, covered with fiberglass) 图 8-12. 三种类型的铁制鳍状龙骨 这三种类型的铁制鳍状龙骨可以最简单移除的是用暴露的螺栓凸缘拴螺栓的类型。同时,暴露的螺栓头是最先恶化的部分。不管是否镀过锌,螺栓最终都需要替换物。船身里面的螺母和垫圈可能被玻璃纤维或者填充树脂油灰的隆起物遮盖。一旦用受损的螺母或用螺母分离器分离或者移除任何覆盖物,你通常可以很容易地移除螺栓。另外两种解除严重生锈的螺栓的方法是用研磨器上的金属切割轮切除螺母,或者杠杆上压的电钻从下面钻掉螺栓头。使用一个大电钻时,安装一个大的手柄防止钻头被卡住时电钻旋转。同时保证你的手指可以自由释放扳机。要说的另外一种方法是:不要包住钻头。半英尺或者更大的钻头有足够大的力量钻点铁制螺栓头,更容易损害你的手,胳膊,或者你身体的其他部位。 安装好新螺栓之后,你要考虑用垫子层覆盖凸缘,这些垫子顶端是凝胶漆或者环氧油漆用于避免新的螺栓头遭到腐蚀。另一方面,如果使用了二三十年的螺栓引起注意,可能专用的锈抑制剂是再好不过的选择。 为了防止遭到腐蚀,目前大多数制造铁制龙骨船艇的造船者不是用玻璃纤维覆盖凸缘就是用玻璃纤维覆盖这个龙骨。一些造船者在船身空心盒状开口处把凸缘做成凹形,因此,凸缘和螺栓头就被整流油灰和玻璃纤维层压板覆盖。大多数有凸缘的龙骨都是带有球状底部的薄鳍。它们有很多完全覆盖在玻璃纤维里。覆盖在其他里,覆盖物在鳍薄的部分会不起作用。平坦的锥形铁制鳍,在船身上拴螺栓或者在断株龙骨上拴螺栓,也可以用玻璃纤维完全覆盖。不管你的铁制龙骨有哪一种类型的附属物,如果你需要移除它修复邻近的船身或者断株龙骨层压板,你将必须确定在哪里切除玻璃纤维覆盖物或者整流油灰,就像上面所描述的那样。 135 中插板及中插板箱 虽然最早的玻璃纤维船艇的中插板通常是金属,木材,或者是有玻璃纤维覆盖的木材,然而现在大多数的中插板,甚至是最小的船艇和帆板,都是被塑成玻璃纤维或者有时候被塑成热后可塑性物质。替换金属板或者木制板,或者甚至是一个覆盖玻璃纤维板不是一个大问题,如果只是简单复制原来的中插板令你满意的话。如果原来的中插板是安装很紧的箱子的金属板,不管怎么样,你必须对它满意,除非你想建造一个更宽的箱子去装它。木制中插板可以改进,如果它被玻璃纤维覆盖的话,可以肯定它可以被制作的更耐用。在这部分,我们将看看模塑的玻璃纤维中插板出现的常见问题,以及如何解决它们。 玻璃纤维中插板的修复 造型线破裂 模塑的中插板有时候会沿着两个玻璃纤维半贝壳结合处裂开。如果中插板内部有很好的很牢固的树脂油灰填料的话,这种问题很罕见,但是对于那些填充芯材料或压载物或者建造在芯材料或压载物周围的中插板而言,这种问题会经常出现。在后一种情况中,很有可能出现空隙,在两半胶合的周界的树脂会缺乏。除非中插板的前缘或者底部角落碰撞时破裂或者分离,接着下缘可能是破裂开口的第一迹象。在中插板在使用时被弯曲或者缠绕,物理压力可能导致破裂,但是在某些其他的点,它们放置在低源且结冰的时候(当中插板在上面的位置)也往往被水渗透导致裂缝。 这两种原因需要一种相似的修复方法:首先,磨碎中插板边缘的空心凹陷,继续磨碎侧面表面,将它的低角逐渐变小。然后用玻璃纤维材料建造一个牢固的补丁,刚开始用又窄又短的片,接着再用又宽又长的玻璃纤维材料。 如果裂缝是由于中插板水渗透造成的,应该检查这个中插板,找出渗透的具体位置。周边可能也有别的破裂,但是枢轴上的孔和垂饰附属物上的孔也应该是主要怀疑的地方。 中插板表面任意的裂缝或疏松 这些也有可能是由中插板内部水渗透和表层破裂造成的。通常铁锈膨胀或者钢加固物在裂缝处留下黄色条纹,可能造成的损坏和冰造成的损害差不多。再次强调,你应该调查进入内部的水的源头,否则,麻烦会继续下去。 合适的修复是碾碎破裂的玻璃纤维,切割出足够深的空间,安装优质牢固的层压板补丁。记住,将中插板宽松地安装在中插板箱里面,向上或向下移动时没有任何不方便。不要把中插板制作得太厚,要保留一定的空隙。如果有很大的空间,中插板将会从一些添加的强度和不透水性中受益很多。 中插板凝胶漆上的压力裂缝 就像在船身或者其他部位,中插板的凝胶漆可能出现压力性破裂,尤其是在被弯曲或者被缠绕的时候,相对容易破碎的凝胶漆很难承受住这种压力。如果裂缝很糟糕,如果在中插板浸入它们很长时间之后没有渗透,如果裂缝只是出现在凝胶漆上而在层压板上没有明显的皱纹,它们可能比较安全,如果没有在它们下面发现任何破裂的迹象,喷些环氧油漆或者树脂保证它们的耐水性。然而,如果在中插板箱里有很多空间增加厚度,在碾碎工作之后使用一些垫子层也许既可以更好地增强硬度也可以更好地增强防水性。如果不可能用单层垫子覆盖那个区域,记住,带对接缝的垫子的两个薄层比带重叠缝的垫子的一个厚层要好得多。重叠缝经常会打开,当你把它们磨平的时候。但是两层的层压板上错落有致的对接点需要不需要碾磨,因此能保持防水性。 136 玻璃纤维表面的破裂 除了在前缘上碰撞遭受的损害,中插板还会遭受打击,会造成层压板一侧或者两侧出现破裂。不只一个中插板在龙骨细长孔的底部完全损坏,但是较小的打击可能弄碎一侧的表面,当在另一侧拉开表面。在中插板两侧出现损坏尤其在比较粗糙的内部的芯不能吸收振动的时候很有可能。这些破裂与压力性破裂不同,它们比压力性破裂更粗糙,更深,在浸透后可能会保持很长时间的潮湿,通常集中沿着一条明确的锯齿形线。当然,如果中插板确实弯曲或者沿着裂缝的地方起折痕,毫无疑问它已经破裂了。 修复这种破裂,刚开始要沿着裂缝磨碎层压板的底部,在周围区域逐渐变小切除的部分。在裂缝上用单向玻璃纤维建造牢固的补丁。警告:如果中插板出现完全,而且在它的一侧有破裂,在另一侧明显没有破裂,在它覆盖玻璃纤维之前,你必须小心谨慎地弄直中插板,安全地施加压力。必须安全夹住,这样固化时树脂减少不会造成新的弯曲或者使已经存在的弯曲变得更糟糕。处于同样的原因,在一侧放置太多的层并不太好,在另一侧放置任何层之前让它们先固化。一个更安全的方法是在每一侧放置同等数量的层,一旦第一面已经固化好就旋转中插板。再次强调,在开始使用层压板之前,不管什么时候尽可能夹住中插板将它放置在一个平表面上。 几乎可以不言而喻的是,增强一个破裂的中插板,你应该增加至少和原来层压板里一样多的玻璃纤维。以后,如果可能的话,使用单向粗纱,如果在中插板箱里有充足的空间,添加一些额外的层。 坏掉的,磨损的或者漏水的硬件 硬件是中插板漏水的最大的单一原因,中插板包括缝隙或者多孔的芯。如果只是简单用垫圈化合物填充硬件上的孔,早晚会漏水。但是即使它们用玻璃纤维填充,在枢轴的孔周围的拴扣物的疏松也可能造成漏水。如果在中插板浸透之后,水从拴紧的孔里流出来,很显然,那里也漏水。 为了停止漏水或者防止漏水,当替换破损的或者坏掉的硬件时,每一个螺栓或者铆钉孔应该钻得比拴扣物更大一些,大约是它直径的一半。用牢固的聚酯或者环氧油灰填充结实,然后再钻孔。未用金属排满的枢轴的孔已经被针变大,这也是标准的固化。实际上,金属衬垫甚至会变得破损,在针上的中插板会嘎嘎响。在这种情况下,你可以在中插板的每一侧安装一个新的金属板,如果需要在中插板箱里保留空隙的话,你可以在中插板上碾磨出多余的空隙。用螺栓或者铆钉将金属板固定在空隙里,用湿垫子垫上或者填充树脂油灰。再次强调,不要忘记先钻出所有孔里的第一个孔,填充树脂油灰,然后再以合适的直径钻其他的孔。 137 中插板 (centerboard) 图 8-13. 给中插板穿多节的升降索。 通常唯一安装在中插板上的其他硬件是一个眼状物或者一些升降索的把手。在一些中插板上,有两个孔可以起到这个作用,沿边的孔在中插板的上部,第二个孔穿过中插板的侧面,和第一个孔的底部相交。绳索升降索穿过一个一个的孔(图 8-13)。不管什么样的附属方法,所有的孔必须密封以防漏水。 替换玻璃纤维中插板 如果你模塑的玻璃纤维中插板受到损坏,你不能从制造商那里得到一个新的中插板,这不是你不能通过覆盖泡沫,木料或者玻璃纤维金属来建造一个新中插板的理由。这些芯材料的选择取决于你将要替换掉的中插板的类型,将毫不怀疑会被你使用最初的中插板的经历所影响。如果最初的中插板已经坏掉,你应该全面检查它的结构,称一下它的重量,测量它的大小。重量不仅是中插板的一个重要特征,而且要结合对它大小的测量,重量将会对它的结构特征设限。根据中插板的重量,考虑它的四种类型:漂浮板,中性浮力板(差不多它的重量等同于水的容量),下沉板及超重的“下垂龙骨”。实际上,漂浮板必须用力迫使它下沉,如果放开的话,它将会迅速上浮。中性浮力板会轻轻地下沉知道完全淹没,但是船正在行驶时,需要固定住它,除非它的一个大部件还在水上面。很显然,下沉板是比水的相同容量还大,需要一定的力量把它拉上来,用多的力把它拉上来这取决于它的重量。不管是装在枢轴上的中插板还是活动披水板,超重的中插板被设计为可以提供适当的压载物和侧平面。下垂龙骨很重,所以需要一个强有力的起重机械,可以防止失控下降。 考虑到这些与你的最初中插板和你的船艇类型有关的因素,这将有助于理解为什么最初的中插板建造时要有一定的重量且要使用机械。漂浮板尤其适合于帆板或者打开船的中插板,因为它不会下沉,如果它在船外的话。当船在行驶的时候,近乎中性的或者有下沉重量的中插板承受水相反的力量。但是没有上浮的负重。这种类型最适合于中插板或者只提供侧平面的活动披水板,比如在轻的没有压载的船上或者那些通过压载龙骨下垂的船上。然而,下垂龙骨或者超重的中插板是必要的,如果船没有它将会变得脆弱。 重点是避免在特定船艇上任何设计的变化,这种变化可能会改变中插板的外观。除非外观之前有问题或者中插板的运转出现问题,建造一个新的中插板谨慎的方法是使它与之前的中插板的重量,大小和形状一样。如果你确实有原因改变中插板的结构,你可以通过每种材料的体积乘以相应的每立方米的重量很容易地预测他的总重。然后拿预期中插板重量与相同体积的水(每立方米它的重量是64磅)比较,你可以知道当中插板被淹没时它如何起作用。 138 修复中插板箱 中插板手提箱或者中插板行李箱的作用是一样的,不管它为帆板提供空间还是90米长摩托艇上又厚又重靠水力运转的的中插板。当然,它的作用是当它被拉上船的时候,它可以提供一个防水箱在中插板附近。在它下降的时候,一个很牢固的外壳系在它的上端。, 水密完整性可以非常容易用玻璃纤维完成,用玻璃纤维会比用木料更容易。因此,它是一个建造拙劣的漏水的玻璃纤维中插板箱,除非它已经受到损害。当然,很少发现在重量的可以自由参赛的船艇有这种中插板箱,这种船艇在超长时间的艰难航行之后会破裂,也会从中插板的杠杆漏水。同时,当整个中插板外罩在吃水线以下,升降索升起,中插板下降,或者枢轴穿透中插板箱可以很容易发生漏水。下面是修复一些你可以遇到的问题的步骤。 沙漏箱 有时候,当一个中插板船艇拖拉上来,箱子的中心和龙骨上细长的孔可能挤压在一起,船艇底部被木块向上推或者放置在龙骨上的提升阀(图 8-14)。问题也有可能是削弱船身和甲板构造的特性造成的,比如升降扶梯舱口和箱子中部的停泊位,如果这些开口造成了脆弱,就不能用防水壁,杆或者横梁支撑。在任何一种例子中,随之发生的箱子挤压可能弄乱中插板。沙漏箱在木制船艇上很常见,但是问题也可能影响玻璃纤维船艇。 将中插板碾磨得更薄不是解决方法,可能只是延长收聚。有一个有效的修复应该从切除箱子和任何结合处的区域开始,挤出箱子,然后加强结构以致于可以充分吸收外部的压力。这可能需要加强防水壁或者船艇侧面或者底部。安装横穿船身的坚实横梁。沿着舱底箱子水平地安装玻璃纤维硬化剂或者基座原木。或者安装多余的地板木料。你的船艇需要哪种方法的修复取决于是什么导致细孔里的压力,只要一个对船身进行仔细研究就能确定这点。如果船艇已经制造了很多年,但是,制造商或者其他主任可能会知道更多有效的解决方法。 底部被龙骨木块推向上方(the bottom is pushed up by the keel blocking) 图 8-14. 一个沙漏中插板箱 139 另外一种可能造成沙漏的原因是铅龙骨。铅龙骨已经被重击或者在它的侧面被碰撞,狭缝中心向里弯曲。在这种情况下,你可能足够幸运,可以简单地将一些楔形物放进狭缝里,这样还可以再次打开。如果它是一个外部的,拴螺栓的铅龙骨,在任何情况下楔形物都不可能破坏它。但是,如铅龙骨上覆盖玻璃纤维或者被压缩进空心龙骨,你就要将楔形物放置在狭缝的板子之间(图 8-15),这样有助于保护玻璃纤维覆盖物。 记住,当挤开中插板箱的时候,楔形物将施加更多的压力,如果它们被用在相同的斜面的话。将楔形物较大的一端放进狭缝,然后使另一个楔形物向上,较大的部分在下面。这对压力向外的相平行的外表面差不多超出它们接触部分和中插板箱的这个长度。许多对楔形物沿着中插板箱的中间部分安放,轮流重击将会沿着狭缝的长度分散活动。楔形物留在适当的位置用于使沙漏曲线变直,当你覆盖玻璃纤维时候,不管什么样的硬化剂都是需要的。 中插板箱子里的破裂或者洞孔 在没有压载物的或者在内部有压载物的船身上,中插板箱可能会沿着船身或者断株龙骨损害。为了修复这种损坏,你必须尽可能在外表面做很多工作,因为在中插板箱里面的工作范围很广,从及其方便到不可能的工作都有。如果顺利的话,你将必须在狭缝里面做的最多的是滑进一片打过蜡的支撑材料,紧紧地挤住它。当你完成修复后,表面将会保持平坦光滑。 铅压载物 (lead ballast) 先放这块楔形物 (put this wedge first) 然后将这块楔形物推进狭缝 (then drive this one in to spread slot) 保护玻璃纤维免受楔形物破坏的板子 (boards protect fiberglass from driven wedges) 中插板箱的下边 (underside of centerboard trunk) 使用足量的楔形物使沙漏曲线变直直到添加坚硬的构件 (use enough wedges to hold the hourglassed curves straight until stiffening members can be added) 图 8-15. 拴螺栓的或者玻璃纤维压缩的龙骨,储藏中插板的龙骨也会受沙漏影响。 140 中插板枢轴问题 最后,枢销,轴承或者中插板上的孔,或者都可能磨损。磨损的程度可以用板子来评估,用推,杠杆撬开或者向上抬起它的枢下端,再次放它下来。如果有过多的自由活动,针的替换物在大多数船艇上相对比较容易。钉通常是一个简单平坦的棒或船身里面中插板箱里孔的轴装置,或者是船身外面的中插板箱底部的贯穿船身。钉可能保留在它的孔里,在每一个底端都有一个玻璃纤维或者油灰凝块。偶尔,也经常使用安有螺丝钉的青铜板,正在制造的木制船艇的遗留物,但是它们用于玻璃纤维船艇的时候非常有用,这种船艇带有少见的外部压载龙骨。找到那个孔,打开它,减轻板子的重量,钉子应该迅速地滑落或者移走。底部由许多油漆覆盖层的旧船,在它上面寻找孔有可能会困难些。如果你遇到了麻烦,你应该通过用尺子在中插板和中插板箱壁之间测量来确定钉子的位置。 我们已经讨论过如果中插板里的孔或者轴承变大该如何去做,但是枢轴安装在含有金属压载物的玻璃纤维龙骨里(或者是由玻璃纤维覆盖的金属压载物龙骨),你可能会有其他的麻烦。很显然,在这样的龙骨中,枢轴孔穿过金属压载物的任何一边及中插板箱的任何一边的玻璃纤维表面。在玻璃纤维和金属接触面总共有四个交叉点,这四个地方可以导致水渗透的麻烦(图 8-16)。如果钉子穿过孔的内层安装,或者如果中插板上一次很严重的震动,它会导致内层破裂,没有什么会使水脱离内层。 中插板 (centerboard) 枢轴 (pivot pin) 水可以进入四个点中任何一个点 (water can enter at any of four points) 图 8-16. 龙骨/中插板装配易于在枢轴附近漏水。 像你所猜想的那样,密封垫破裂最大的危险在中插板狭缝两个内壁,这是最难接触到的两个地方。如果金属压载物是铅,玻璃纤维裂缝的唯一问题就是渗水,解决这一问题的方法是使裂缝区的水干透然后建造补丁,这样在水结冰的时候可以防止裂缝扩大。如果你早点发现裂缝,你可以切除碎片,涂上牢固的环氧油灰比如Marine-Tex, 这样就可以解决裂缝漏水的问题。否则,你不得不在铅上钻孔,安上玻璃纤维管。如果你必须采取这种方法,确保在管子附近玻璃纤维表面打埋头孔,这样你就可以放置一系列的由垫子和粗纱制作的玻璃纤维圈或者牢固的树脂油灰圈密封结合处。 修复铁制龙骨上漏水枢轴孔的步骤基本上与修复铅龙骨上漏水枢轴孔的步骤一样。但是过早地发现问题很重要。铅几乎可以抵抗盐水的腐蚀,但是在铁制龙骨内部的锈使玻璃纤维表面破裂,不管有还是没有结冰的帮助作用。这个问题最糟糕的部分是擦去锈,在铁上钻孔,除非那个孔已经足够大可以放置合适的玻璃纤维内衬,它将会被玻璃纤维龙骨覆盖物密封。仍然需要安装一个玻璃纤维管是我所知道的密封洞孔的唯一令人满意的方式。用玻璃纤维包裹铁制龙骨,贯穿龙骨安装中插板枢轴,关于这方面问题的想法足以让造船者多思考。要活到老,学到老。 141 舵和导流尾鳍 全金属铲型舵 虽然这些舵不属于玻璃纤维修复的范围,但是我们不能不讨论它们的结构或者修复。然而,我应该提醒你修建一个牢固的玻璃纤维加固物,在那里舵杆可以进到船里,在任何可能的时候都要给舵杆提供一个上轴承。同时,不要忘了现代玻璃纤维舵杆孔超过于为拴木制船艇设计的旧式青铜填料函的优点。 金属杆且玻璃纤维叶片的舵 不需要依靠支撑物的或者悬挂导流尾鳍的铲型舵有玻璃纤维叶片,常常用于帆船,同样的方法为长龙骨船艇建造舵。因此,我们把两者看做同一种类型。这些舵,当大批生产时,包括放置在模具两半的玻璃纤维半贝壳在中线的位置裂开。当在金属杆或者任何加固物或者添加的芯材料附近的模具关闭,半贝壳被留在模具上。树脂油灰也被放进模具为了填充空隙和将任何东西都黏结在一起。 这种构造几乎和大批制造中插板的方法相同。它的牢固程度和耐用性很大程度上取决于模具的构成成分和树脂油灰的粘性。在舵壳上的漏水,在内部有空隙,里面的水结冰最终会导致这种构造最常见的失败沿着两个玻璃纤维半贝壳的中线结合处裂开。碾磨裂痕,在叶片的两片附近继续碾磨出几英尺空心以致可以建造一个U型的玻璃纤维补丁,当密封裂痕的时候,它可以使两边系在一起。如果在裂痕后面有空隙,当然,它应该被填充一些油灰进去。你也应该仔细检查舵的各种不同的水渗透,这种渗透必须被止住。 另外,中线裂缝,舵可能也会出现破裂,由于更大范围的水侵入它的内部,所以除去叶片侧面上的这些区域。流出锈是显而易见的可以说明里面铁制加固物生锈的迹象。如果你已经读到这儿,你应该知道你该怎么做—磨碎它,用大量层压板覆盖它进行重新密封。不要忘记,至少要有两层垫子在外面,这是密封水渗透的最好选择。同时,像刚才前面写到的关于中插板的部分,如果既没有加重紧靠着新层压板上过蜡的平坦光滑的表面,也没有在第一面还没有干的时候放置平衡层,那么就不要放置太多的玻璃纤维在叶片。 勒紧舵杆上的叶片 为了防止叶片在舵杆上旋转,焊接在舵杆的金属杆或者金属柄脚或者金属板掩盖在铸造油灰中(铸造树脂和添加的一种填料)。有时候,我知道因为这经常出现在我的店里的舵上,这些杆或者“钥匙”裂缝,使舵在杆上摆动,就像天气风向标而不是掌舵驾驶船。不幸的是,很便宜就可以买到新的舵,或者至少可以制造一个,可以利用原来的舵杆制造一个新的舵也比修复那个旧舵好得多。修复的可行性取决于最初构造的具体细节,不同的造船者的情况不同,修复的可行性也不同,从微弱舵杆上类似朽木的泡沫周围易碎的玻璃纤维壳到结实舵杆上像岩石一样坚实的壳。 142 如果破损的舵杆很结实,它的叶片看起来也是牢固,如果没有深究的碾磨,我不会放弃修复或者重建它的想法,这将花费比你的时间更多的费用。在舵杆的任何一侧的尾部画一条线,平稳地握住碾磨轮,碾磨掉那条线前面的玻璃纤维,知道舵杆的面沿着两边的长度暴露出来(图8-17)。 当已经达到这种状态或者在这种状态达到之前,应该试图脱离舵杆上的叶片,取决于柄脚的位置及柄脚破损的程度。现在你可以确定什么类型的柄脚可以使用,叶片本身的构造及每个部件重新使用的可行性。在表面配置上,一个U型的柄脚在舵杆附近被包裹,它的长支柱向着叶片的下缘很好地终止了。我最近调查的这艘船艇,松掉的叶片只需要一个穿过柄脚和舵杆的钉子替换一下就可以了。 舵杆 (rudder stock) 碾磨两边到舵杆后面的一条线,没有遮盖它 (grind both sides to a line aft of the stock, uncovering it) 破损的金属带 (broken strap) 焊接的金属带 (straps welded) 碾磨通往金属带的渠道 (grind channels to access straps) 机械拴紧的金属带 (straps are mechanically fastened) 机械螺丝钉,钻孔并轻敲它 (machine screw, bored and tapped) 自攻螺丝 (self-tapping screws) 铆钉 (rivets) 图 8-17. 破损的舵杆通常会被替换而不是修复。然而,如果是做工精良的舵,你花在修复方面的费用会比你花的时间还要多。 如果叶片足够牢固,还有其他新的渠道进入舵杆焊接新金属带的位置。柄脚应该安装在他们的外表面,大约与舵杆的外表面持平,它们应该用用铆钉钉在叶片上或者用螺栓拴在叶片上。然后可以用层压板再次覆盖柄脚,加入新层压板,它们必须放置在舵杆附近。所有添加到叶片上的新层压板应该放进最初的层压板足够远可以达到至少12比1的结合,或者更多。这个步骤是最好的,即使对于破损的柄脚或者在叶片中心的柄脚。你不需要移除破损柄脚覆盖物,你将省去很多碾磨时间,你的固定工作也会比原来的牢固很多。 这只是修复舵的一种方法。如果叶片没有重复使用的价值,你可以重建用木头芯重建一个新的叶片,或者用穿过舵杆的新螺栓附近的层压板芯,如果它是原来的那种类型的构造的话。然而,如果舵杆没有损坏,或者如果你认为它不能再次使用,机械修理店可以为你制造一个新的并安装在原来的叶片上或者安装进新的叶片。 导流尾鳍 如果你的损坏的舵不是安装在龙骨的后端,它有可能安装在导流尾鳍的后端,我说的“放置”,因为“安装”意味着一些来自于导流尾鳍的支撑,然而在一些模具上谁支撑谁是不确定的。如果你的舵前面的尾鳍没有明显的能力保护或者稳固舵,你不需要惊慌。有时候,尾鳍在原型试航之后或者早期制造模型出现掌舵后添加。在这种情况中,原来设计用来自营的铲型舵,通常保持原来样子被留下,除了在跟部提供舵栓,在安尾鳍上安装舵轴。有了能自营的舵,尾鳍上太大的强度是多余的。 为了确定损坏的尾鳍是否可以给舵提供支撑,你应该研究一些相同尺寸的其他船艇,看看是否你的舵更像铲型舵还是像悬龙骨型舵。舵杆的大小是极重要的因素。可以独自支撑的舵可能从尾鳍得到很少或者几乎没有得到支撑。然而,牢固龙骨的舵只有扭转力。如果你将要在尾鳍上悬挂一个悬龙骨型舵,尾鳍将必须足够牢固以致于可以提供同样的支撑。 143 修复导流尾鳍 尾鳍的修复不但取决于它是否支撑舵,还取决于它是通过什么方式附加在船上。过去的几十年,帆船的很多尾鳍建造的时候与船身分离,因为它们很深很薄以致于包含在模具里不是很可行。像这样的尾鳍会用螺栓拴在船身上,断株龙骨上或者船身的空心盒形凹处。比较容易移除它们,从制造商那里获取一个新尾鳍替换或者如果是严重受损的话就修复它。 除非你对建造新尾鳍的挑战担心,从制造商那里买一个替换尾鳍应该更容易些。不幸的是,我说的只是“应该”更容易些,因为模具不能再建,或者如果那艘船艇是进口的话,海运那个部件可能需要很长时间的等待。当然,如果原来的尾鳍建造得很糟糕,它仍然值得去制造商那里索取一个同样形状的新尾鳍。但是你可能觉得不得不添加一些额外的层压板加强它。不要担心如何知道是否需要加强。如果不知道是否需要加强它,可能它不需要加强。正好相反,如果原来的尾鳍不稳定,破裂,漏水,或者破损,暴露出脆弱的,填充泡沫的内部,新的尾鳍可能需要用一些牢固的层压板包裹。如果你建造拙劣的尾鳍在一艘进口船艇上,你即那个不得不同意我的说法,外国制造商不会一直竭尽所能为你做所有的事情。(这里我再次说,总是进口船艇的讽刺者)。 在任何情况下,如果你坚持用这种尾鳍,没有理由你不用几层玻璃纤维材料包住它,比如双轴粗纱,用垫子交替或者用垫子做衬里。像往常一样,你应该最后应该在顶部放置两层垫子增强它的耐水性。当你覆盖尾鳍的时候,有两个因素你必须要考虑:首先,你必须在舵和尾鳍之间保持足够的空隙,使轴在转动的时候没有任何束缚。需要你向后碾磨原来的尾鳍层压板足够远的距离可以允许你在后缘上建造更厚的层压板。添加一些层之后你感觉后缘比侧面和前缘牢固,你可以在后表面减去一些层,达到你满意的重量。另外一个要牢记的因素是一点点厚在大多数尾鳍上没有任何意义,你要保持机翼的形状。我建议你不要重叠那些额外添加的层。在整个尾鳍上用对接层,小心操作避免造成隆起物和空心,否则将需要大量整流片。当然,如果开始时尾鳍很薄或者形状拙劣,你可以通过改变它的形状很好地改进它。 建造新尾鳍 对任何船艇来说,建造新尾鳍不是特别困难的事情。即使没有什么留下来,但是它的底部形状还依然存在,沿着后缘用舵作为它的形状的向导(可能船艇拖出来时有船身图片),你应该按着做(图 8-18)。对于这种特定尺寸的船艇,你应该画一个船身的轮廓,确定后缘的的厚度(在大多数情况中,舵后缘的厚度和前缘的厚度一样)。舵的尺寸也决定尾鳍后缘凹洞的半径,在尾鳍和舵之间应该有多少空隙以及是否需要切除尾鳍后缘侧面以使舵可以转动到停止点(在30度到40度之间的某处)。厚度通常非常一致。也就是说,侧面几乎平行或者有点微凸,前缘不太尖或者太平,但是大多数舵上前缘都是非常倾斜的抛物线。在造船厂还有很多其他的尾鳍值得研究。 144 遗失尾鳍侧面图可以取自船身图或者制造商的宣传册,达到完全尺寸 (the profile of the missing skeg can be taken from a photograph of the hull, or a manufacturer’s brochure, and scaled to full size) 取自舵前缘的尾鳍后缘半径 (radius of skeg’s trailing edge taken from rudder’s leading edge) 船身遗失尾鳍基座的形状 (shape taken from missing skeg’s base on hull) 图 8-18. 重建遗失的尾鳍。 将新尾鳍制成薄板比较简单的芯材料是泡沫,胶合板和铝。泡沫最容易切,安装和成形,但是它易损坏且很昂贵,你必须在它上面建造一个更厚的层压板来加固尾鳍。胶合板是最便宜的,但是你必须记住使用外部的防水材料。即使胶合板掩埋在层压板里,也经常用防水胶水,如果使用在船艇的任何地方。胶合板制作的芯很牢固。很容易在里面安装螺栓,也很容易塑形。你想要多厚就可以胶粘多厚。它也有另外一个优点在地形图轮廓方面,当你轻拍它使它塑形的时候,它的胶合线可以指导你。 铝比胶合板更贵,但是它对薄尾鳍有益,因为它很优质也很牢固。它制造了一个很重的有负浮力的尾鳍,同时,一个胶合板芯尾鳍朝向中和有浮力的一边,一个泡沫芯尾鳍非常有浮力。铝与拴在船身或者硬件上的不锈钢内部螺栓,但是不要用青铜扣件,只是防止水沿着螺栓渗透层压板。当然,如果螺栓只穿过玻璃纤维,离开芯,没有流电腐蚀。 我认为我应该提一下钢,它可以使所有的芯最坚固最沉重。如果原来的尾鳍用钢制作,如果你认为重量是重要的压载物,或者如果尾鳍特别易损坏。确定你非常安全地用带有大部分垫子的玻璃纤维包裹住钢,这样可以密封水分。毕竟在芯用钢制作的时候,你不需要加强耐水性。不锈钢螺栓是将钢芯拴到船身上最好的选择,但是在这里,也要考虑密封!就像硬件螺栓,比如说舵枢,它是在钢上钻孔的最好硬件,用环氧油灰填充孔(比如Marine-Tex), 然后再在螺栓上钻孔。 不管时候,尾鳍需要螺栓将它拴紧在船身上,它们必须被安装好。在泡沫芯上,用玻璃纤维树脂油灰填充螺栓周围的大型狭缝。填油灰的狭缝需要一些“鱼钩”装置防止被拉出来(图 8-19)。螺栓可以被沿着它们的长度用一些螺母和垫圈穿不锈杆,或者如果光滑的杆,短片不锈被焊接在细长的柄上。杆的任何一边可以弯曲增加握力,即使在末端的一个L型弯曲也是这样。好的加固物,在任何情况下,意味着很多在外壳层压板和玻璃纤维加固材料之间的表面接触。 虽然原来的尾鳍可能已经简单拴上螺栓,你没有理由不能把你的新尾鳍安装在船身上,而言可以重新在上面拴螺栓。如果使用足够的层,传送玻璃纤维足够远直至船身和尾鳍,螺栓就完全没有必要了。肯定的是,制造商使用螺栓的原因是将尾鳍分离船身建造时方便,从尾鳍到船身缺乏栅栏只是为了节省本应需要整流和滤波力。你的替换不是一个制造工作,所以这可能是真正舒适的安装工作。
  
网站首页 | 关于我们 | 翻译案例 | 服务价格 | 家教服务 | 付款方式 | 联系我们
Copyright © 2009 yiming.com Inc.All rights reserved.
宁波翻译公司(宁波翻译)版权所有 备案序号:浙ICP备11029344号-1   技术支持:宁波翻译公司